• Title/Summary/Keyword: Ship Data

Search Result 2,057, Processing Time 0.027 seconds

Fundamental Study for Predicting Ship Resistance Performance Due to Changes in Water Temperature and Salinity in Korea Straits (대한해협에서의 수온 및 염도변화를 고려한 선박의 저항성능 예측을 위한 기초 연구)

  • Seok, Jun;Jin, Song-Han;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.418-426
    • /
    • 2015
  • Recently, shipping operators have been making efforts to reduce the fuel cost in various ways, such as trim optimization and bulb re-design. Furthermore, IMO restricts the hydro-dioxide emissions to the environment based on the EEDI (Energy Efficiency Design Index), EEOI (Energy Efficiency Operational Indicator), and SEEMP (Ship Energy Efficiency Management Plan). In particular, ship speed is one of the most important factors for calculating the EEDI, which is based on methods suggested by ITTC (International Towing Tank Conference) or ISO (International Standardization Organization). Many shipbuilding companies in Korea have carried out speed trials around the Korea Straits. However, the conditions for these speed trials have not been exactly the same as those for model tests. Therefore, a ship’s speed is corrected by measured environmental data such as the seawater temperature, density, wind, waves, swell, drift, and rudder angle to match the conditions of the model tests. In this study, fundamental research was performed to evaluate the ship resistance performance due to changes in the water temperature and salinity, comparing the ISO method and numerical simulation. A numerical simulation of a KCS (KRISO Container ship) with a free-surface was performed using the commercial software Star-CCM+ under three conditions that were assumed based on the water temperature and salinity data in the Korea Straits. In the simulation results, the resistance increased under low water temperature & high salinity conditions, and it decreased under high water temperature & low salinity conditions. In addition, the ISO method showed the same result as the simulation.

A Study on Development of PC-based Ship Handling Simulator (PC를 이용한 선박 조종 시뮬레이터의 개발에 관한 연구)

  • 손경호;이성욱
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.2
    • /
    • pp.25-33
    • /
    • 1998
  • This paper deals with PC-based ship handling simulator, which is now widely utilized not only for total assessment of safety in harbour area but also for training purpose. The suitable mathematical model for low advance speed manoeuvre is treated with the effects of current, wind, wave, tug force and water depth. We adopt 3 dimensional graphic technique for perspective representation of relative ship motion. Some graphical panels on the screen are devised for data input/output or ship manoeuvring information. We show the real time simulation of berthing menoeuvre applied to Pusan harbour as an example.

  • PDF

A Basic Study on Connected Ship Navigation System

  • Choi, Wonjin;Jun, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.136-143
    • /
    • 2020
  • Maritime autonomous surface ships (MASS) has been developed over the years. But, there are many unresolved problems. To overcome these problems, this study proposes connected ship navigation system. The system comprises a slave ship and a master ship that leads the slave ship. To implement this system, communication network, route planning algorithms, and controllers are designed. The communication network is built using the transmission control protocol/Internet protocol (TCP/IP) socket communication method to exchange data between ships. The route planning algorithms calculate the course and distance of the slave ship using the middle latitude sailing method. Nomoto model is used as the mathematical model of the slave ship maneuvering motion. Then, the autoregressive with exogenous variables (ARX) model is used to estimate the parameters of Nomoto model. Based on the above model, the automatic steering controller is designed using a proportional-derivative (PD) control. Also, the speed controller is designed for the slave ship to maintain constant distance from the master ship. Sea experiments are conducted to verify the proposed system with two remodeled boats.

Prediction of Motion State of a Docking Small Planing Ship using Artificial Neural Network

  • Hoang Thien Vu;Thi Thanh Diep Nguyen;Hyeon Kyu Yoon
    • Journal of Navigation and Port Research
    • /
    • v.48 no.2
    • /
    • pp.116-124
    • /
    • 2024
  • Automatic docking of small planing ship is a critical aspect of maritime operations, requiring accurate prediction of motion states to ensure safe and efficient maneuvers. This study investigates the use of Artificial Neural Network (ANN) to predict motion state of a small planing ship to enhance navigation automation in port environments. To achieve this, simulation tests were conducted to control a small planing ship while docking at various heading angles in calm water and in waves. Comprehensive analysis of the ANN-based predictive model was conducted by training and validation using data from various docking situations to improve its ability to accurately capture motion characteristics of a small planing ship. The trained ANN model was used to predict the motion state of the small planning ship based on any initial motion state. Results showed that the small planing ship could dock smoothly in both calm water and waves conditions, confirming the accuracy and reliability of the proposed method for prediction. Moreover, the ANN-based prediction model can adjust the dynamic model of the small planing ship to adapt in real-time and enhance the robustness of an automatic positioning system. This study contributes to the ongoing development of automated navigation systems and facilitates safer and more efficient maritime transport operations.

A Study on the Relationship between National Controlling Fleets and the Managerial Performance of Ship Management Companies in Korea

  • Sang Bae Lee;Chi Yeol Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.2
    • /
    • pp.104-108
    • /
    • 2024
  • This study investigates the relationship between national controlling fleets and the managerial performance of ship management companies in Korea. As industries clearly show interrelations between upstream and downstream entities , it is likely that the managerial performance of ship management companies in Korea is affected by the size of national fleet. Therefore, the present study analyzes the impact of Korean fleet size on the growth and the profitability of ship management firms. To this end, the performances of 10 major ship management companies in the period from 2012-2022 are examined through panel data regressions. The results indicate that the size of the national fleet has a positive impact on growth in both the assets and the sales of ship management companies. Specifically, the size of the Korean-flagged fleet is the most crucial factor, while that of the foreign-flagged fleet has no significant effect. In stark contrast to the findings regarding growth, the size of national fleet is found to have no significant impact on the profitability of ship management companies. This study's findings are expected to provide valuable implications informing both the managerial decision-making of ship management companies as well as policy-making for shipping and its related industries.

Pseudo-standard and Its Implementation for the Maintenance Data of Ship and Offshore Structures (선박 및 해양 구조물에 있어서 유지보수용 데이터 교환을 위한 준표준 분석과 사례 구현)

  • Son, Gum-Jun;Lee, Jang-Hyun;Lee, Jeongyoul;Han, Eun-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.267-274
    • /
    • 2013
  • This study focuses on the data schema and data content, which includes maintenance data, data structures and illustration data relevant with the maintenance process of ship and offshore structures. Product lifecycle management (PLM) is expected to encompass all the product data generated for the operation and maintenance information as well as the design and production. This paper introduces a data exchange schema in PLM of ship and offshore, serving as the basis for the role of standards required by the middle-of-life PLM. Also this paper identifies a typology of standards relevant to PLM that addresses the schema of evolving standards and identifies a XML schema supporting the exchange of data related with maintenance operations. Technical document based on standards in accordance with S1000D and Shipdex is explained. A case study illustrating the use of standard data exchange and technical document is presented.

A Study on Ship's Maneuverability Evaluation by Real Ship Test (선박조종성능 평가를 위한 실선 실험연구)

  • Im, Nam-Kyun;Han, Song-Hee;Nguyen, Thanh Nhat Lai
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • At the design stage, it is very important to know the ship maneuvering characteristics from the view point of ship performance and for the safety of navigation. IMO only gives some criteria for ships in full load even keel condition. However, the ship generally is operated not only in full load condition but also in half load condition or ballast condition. Therefore we must estimate the ship maneuvering in different loading condition to ensure that the ship will satisfy with IMO rules and navigate safely in every condition. In this paper, we have investigated the maneuvering characteristics of a ship by simulation and experiments with real ship. By comparing with the results of simulation, the real ship tests conform with simulation test and previous researches. Therefore, the method base on real data is well done to estimate the ship maneuvering in different loading conditions. The change of ship's manoeuverability accoriding to ship's operation conditions was estimated.

Utilization of Planned Routes and Dead Reckoning Positions to Improve Situation Awareness at Sea

  • Kim, Joo-Sung;Jeong, Jung Sik;Park, Gyei-Kark
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.288-294
    • /
    • 2014
  • Understanding a ship's present position has been one of the most important tasks during a ship's voyage, in both ancient and modern times. Particularly, a ship's dead reckoning (DR) has been used for predicting traffic situations and collision avoidance actions. However, the current system that uses the traditional method of calculating DR employs the received position and speed data only. Therefore, it is not applicable for predicting navigation within the harbor limits, owing to the frequent changes in the ship's course and speed in this region. In this study, planned routes were applied for improving the reliability of the proposed system and predicting the traffic patterns in advance. The proposed method of determining the dead reckoning position (DRP) uses not only the ships' received data but also the navigational patterns and tracking data in harbor limits. The Mercator sailing formulas were used for calculating the ships' DRPs and planned routes. The data on the traffic patterns were collected from the automatic identification system and analyzed using MATLAB. Two randomly chosen ships were analyzed for simulating their tracks and comparing the DR method during the timeframes of the ships' movement. The proposed method of calculating DR, combined with the information on planned routes and DRPs, is expected to contribute towards improving the decision-making abilities of operators.

The Study on the Effect of Loading Condition on Ship Manoeuvrability (흘수변화가 선박 조종 성능에 미치는 영향에 관한 연구)

  • Im, Nam-Kyun;Kweon, Suk-Am;Kim, Se-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.105-112
    • /
    • 2005
  • IMO standards for ship manoeuvrability were applied from January 1, 2004. Though model test or sea trial in full load condition is needed, it is not always possible to get such data for every ships. Therefore it is required to study the effect of loading conditions on ship manoeuvrability. Approximate formulae to estimate the hydrodynamic forces acting on a ship and the 2nd overshoot angle of $10^{\circ}$/$10^{\circ}$ zig-zag test in certain loading condition are proposed in this study These were derived from the results of model test and sea trial data. Captive model tests for 7 ships with 15 different loading conditions and sea trial data including free running test of 6 cases were used. Compared with experiment data and prediction formulae already proposed by others, the approximate formulae in this study show good agreement with model test results.

Efficiency Evaluation of a Hybrid Propulsion Fuel Cell Ship Based on AIS Data (항적 데이터에 기반한 하이브리드 추진 연료전지 선박의 효율 평가)

  • Donghyun Oh;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.146-154
    • /
    • 2023
  • Efforts have been made to reduce the greenhouse gas emissions from ships by limiting the energy efficiency index, and net zero CO2 emission was proposed recently. The most ideal measure to achieve zero emission ship is electrification, and fuel cells are considered as a practical power source of the electrified propulsion system. The electric efficiency in the electrochemical reaction of fuel cells can be achieved up to 60% practically. The remaining energy is converted to heat energy but most of them are dissipated by cooling. In the author's previous research, a hybrid propulsion system utilizing not only electricity but also heat was introduced by combining electric motor and steam turbine. In this article, long term efficiency is evaluated for the introduced hybrid propulsion system by considering a virtual 24,000 TEU class container carrier model. To reflect a more practical operating condition, the actual navigation data of a similar real ship in the real world were collected from automatic identification system data and applied. From the result, the overall efficiency of the hybrid propulsion system is expected to be higher than a conventional electric propulsion fuel cell ship by 30%.