• Title/Summary/Keyword: Ship’s Speed

Search Result 559, Processing Time 0.026 seconds

Comparison Analysis on Efficiency and Operating Characteristic between Induction and BLDC Motor according to the Load Variation Based on Battery Power Source for Electric Propulsion System of Small Ships (소형 선박 추진용 축전지 전원 기반 유도모터와 BLDC모터의 부하별 운전 특성 및 효율 비교 분석)

  • Yeong, T.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2011
  • This paper aims at investigation some operating characteristics and energy usage efficiency of a induction motor and a BLDC motor considering electric propulsion system in a small ship based on battery source. At first, performance curves of discharge voltage from the battery and current from each motor according to the load variations were analyzed. Next, variations of motor torque and rotational speed versus load change at each motor were analyzed. Finally, efficiency of energy usage of the battery and available navigation distance were compared each other. Through some comparisons and analyses, it was cleared that the BLDC motor is more suitable for the motor of the electric propulsion system in small ships based on battery source. It is expected that the results can be used as useful data for design of the electric propulsion system with batteries.

Optimum Allocation of Ships Emphasizing the Cargo Delivery Time (화물의 인도시기를 최우선으로 하는 배선문제)

  • 이중우;양시권;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.5 no.1
    • /
    • pp.1-23
    • /
    • 1981
  • As far as transportation problems are concerned, the minimization of transportation cost is the most prevailing object. But in some cases, the cargo delivery time is the utter problem rather than the cost. For instance, we may imagine the case that the delivery of the construction materials is delayed behind the schedule and this makes the construction cost increased because of idle time of other materials and man power, in addition to the indemnity. Therefore the allocation of ships, in marine transportation which is now the main route of overseas trade, to the needed area on the required time is to be appropriately performed. However, there are several restrictions for cargo delivery to meet the demand, such as ship's size, number to be employed and cargo handling capacity of the ports, etc. And there are some other factors to be considered, that is, the degree of necessities of commodities, on their kinds, amount, and the time of arrival, etc. This paper deals with the problem of optimum allocation of ships emphasizing the cargo delivery time adopting Linear Programming technique with those cargo delivery restrictions and factors transformed by introducing the multi-speed conception, the conversion of multi-commodity to a single commodity, allowable delivery time, weight penalty number and nominating priority. This paper presents a case of optimum allocation of ships in the light of cargo delivery time for a construction company which has two different construction places and analyzes the result. This study will give a planner a good tool for optimum planning of maring transportation and be used for decision of schemes.

  • PDF

A Comparative Study on Policy of Modal Shift for Enhancing of Eco-friendly Rail Freight Transportation (친환경수단으로서의 철도화물운송 증대를 위한 Modal Shift 정책 비교 연구)

  • Lee, Yoon-Mi;Moon, Dae-Seop;Yoo, Jae-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2455-2462
    • /
    • 2008
  • Global warming has become one of the most important social responsibilities. After Kyoto protocol for greenhouse gas reduction by climatic change convention came into effect, developed countries are presenting various policies to reduce greenhouse gas that is produced in transport field. One of those policies is modal shift that change from road freight to sea, inland waterway and railway transportation that is eco-friendly. Because increase of road freight brings about road congestion and accident, logistics cost, air pollution and green house gases. Railways are superior to all other modes of transport in mass transportability, high speed, timeliness, safety and environmental-friendliness, but the railway industry has been pushed behind in competition. In developed country's government actively promoted relevant legislation, policies, and countermeasures known as modal shift policies to shift freight transport from road to large volume mode such as railway and ship. In this paper, we discuss the current situation in modal shift, compare it with cases in other countries EU and Japan, identify problems in Korea, and propose the following ways to enhance competitiveness of rail freight.

  • PDF

Minimum Wave Resistance Hull Form Derived from Center Plane Source Distribution and its Application to Hull Form Design (선체중심선면(船體中心線面)에 분포(分布)된 특이점계(特異點系)로부터 얻어지는 최소조파저항선형(最少造波抵抗船型)과 그 응용(應用))

  • Hyo-Chul,Kim;B.S.,Hyun
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.31-37
    • /
    • 1982
  • Developing a minimum wave resistance hull form which is satisfying the given requirements such as displacement and speed is one of the important problems in ship hydrodynamics. The theoretical approach conducted by Pien was successful in developing an optimized hull form, however, which can not be applied directly to practical hull form without manual lines fairing process. To avoid this difficulty, source distribution which arrived after the optimization was put into a fictitious restricted channel and as a result practicably modified hull form was derived by stream line tracing. The wave resistance of the hull thus obtained was calculated by solving the simplified integral equation suggested by Kan. The resistance at design point is almost same with that of the original hull which was represented by source distribution on the vertical rectangular center plane. It is therefore recommended to use the derived hull form for the hull which obtained after manual lines fairing process at Pienoid method. Further researches both in theory and experiment are necessary before this concept is put into practical application.

  • PDF

Motion Analysis of an Underwater Vehicle Running near Wave Surface (파랑수면 근처에서 항주하는 수중운동체의 운동해석)

  • Yoon, Hyeon Kyu;Ann, Seong Phil;Jung, Chulmin;Kim, Chan-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.395-403
    • /
    • 2016
  • A cylinder-type underwater vehicle for military use that is running near the free surface at the final homing stage to hit a surface ship target is affected by wave force and moment. Since wave can affect an underwater vehicle running at the depth less than half of the modal wave length, it is important to confirm that the underwater vehicle can work well in such a situation. In this paper, wave force and moment per unit wave amplitude depending on wave frequency, wave direction, and vehicle's running depth were calculated by 3-Dimensional panel method, and the numerical results were modeled in external force terms of six degrees of freedom equations of motion. Motion simulation of the underwater vehicle running in various speed, depth, and sea state were performed.

Cavitation Noise Detection Method using Continuous Wavelet Transform and DEMON Signal Processing (연속 웨이브렛 변환 및 데몬 신호처리를 이용한 캐비테이션 소음 검출 방법)

  • Lee, Hee-chang;Kim, Tae-hyeong;Sohn, Kwon;Lee, Phil-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • Cavitation is a phenomenon caused by vapour cavities that is produced in rapid pressure changes. When the cavitation happened, the sound pressure level of a underwater radiated noise is increased rapidly. As a result, it can increase the probability of the identification or classification of a our warship's acoustic signature by an enemy ship. However, there is a problem that it is hard to precisely detect the occurrence of a cavitation noise. Therefore, this paper presents recent improvements in terms of the cavitation noise measurement by using continuous wavelet transform and DEMON(Detection of Envelope Modulation on Noise) signal processing. Then, we present that the suggested scheme is more suitable for detecting the cavitation than existing algorithms.

A Study on the Development of High Deposition Automatic Vertical Welding of Erection Stage in Shipbuilding (조선 탑재용접용 대입열 수직자동용접법의 개발에 관한 연구)

  • Park, Ju-Yong;Choe, Woo-Hyeon
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.66-73
    • /
    • 2008
  • Welding work in pre-erection or erection stage of shipbuilding construction to be carried out in flat and vertical upward position mostly and Electrogas welding(EGW) is actively applied especially for vertical butt joint of thicker steel plate recently. In this study considered how to develope and improve mechanical properties of weld metal and HAZ in high heat input welding processes such as EGW and Electroslag welding(ESW) with its welding equipment in order to extend the application range to the longitudinal members and hatch coaming parts of container ship. Some components of welding system and parameters were modified to get the faster travel speed and reduce weld heat input, and also by adding additional filler rods or tubes increase the amount of deposited weld metal. With the test get some good date can apply to actual fabrication work and recommend items to manufacture welding materials make better. Above all things it's a fruition that to prepare the possibility of application of ESW to shipbuilding construction which fill up the gap of stoppage days of more than 20 years.

Calculation of the coupled free, transverse vibrations of the multi-supported shaft system by transfer matrix method (전달매트릭스법에 의한 다점지지축계의 연성자유횡진동계산에 관한 연구)

  • 안시영;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.49-63
    • /
    • 1983
  • Coupled transverse shaft vibrations have become the target of great concern in high powered ships such as container ships. Due to increasing ship's dimensions and high propulsive power, resonance frequencies of the propeller shaft system tend to decrease and can appear in some cases within the operating speed range of engine. In this connection, the coupled free transverse vibrations of shaft system in two planes are theoretically investigated. This shaft system carries a number of discs and is flexibly supported by a number of bearing stiffness are considered for the calculation. Transfer matrix method is applied to calculate the shaft responses in both planes. A digital computer program is developed to calculate the shaft responses of the coupled transverse vibrations in two planes. An experimental model shaft system is made. It is composed of a disc, shafts, ball bearings thrust bearings and flexible bearing supports. The shaft system is excited by an electrical magnet, and shaft vibration responses in two planes are measured with the strain gage system. From these measurements, the natural frequencies of the shaft system in both planes are found out. The developed program is also used to calculate the shaft vibration responses of experimental model shaft system. From the results of these calculations, the natural frequencies of shaft system in two planes are derived. Theoretical predictions of model shaft natural frequencies show good agreements with its esperimental measurements.

  • PDF

Accuracy evaluation of 3D time-domain Green function in infinite depth

  • Zhang, Teng;Zhou, Bo;Li, Zhiqing;Han, Xiaoshuang;Gho, Wie Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • An accurate evaluation of three-dimensional (3D) Time-Domain Green Function (TDGF) in infinite water depth is essential for ship's hydrodynamic analysis. Various numerical algorithms based on the TDGF properties are considered, including the ascending series expansion at small time parameter, the asymptotic expansion at large time parameter and the Taylor series expansion combines with ordinary differential equation for the time domain analysis. An efficient method (referred as "Present Method") for a better accuracy evaluation of TDGF has been proposed. The numerical results generated from precise integration method and analytical solution of Shan et al. (2019) revealed that the "Present method" provides a better solution in the computational domain. The comparison of the heave hydrodynamic coefficients in solving the radiation problem of a hemisphere at zero speed between the "Present method" and the analytical solutions proposed by Hulme (1982) showed that the difference of result is small, less than 3%.

Field Experiments and Analysis of Drift Characteristics of Small Vessels in the Coastal Region off Busan Port (부산항 연안해역에서의 소형선박 표류 거동특성 관측 및 분석)

  • Kang, Sin-Young;Lee, Mun-Jin
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.221-226
    • /
    • 2002
  • To provide reliable data for drift prediction models, field experiments were carried out in the coastal region off Busan port. Four different size of vessels(10, 30, 50, 90G/T ton) were deployed for the experiment. Among them G/T 50ton class vessel was equipped with instruments measuring the currents, winds, headings and trajectory data. In the rest of vessels only the position data were recorded for the purpose of target divergence study. The trajectories of each vessel were measured by DGPS(Differential Global Positioning System) and collected by APRS(Automatic Position Reporting System). The experiment was done in wind of 2~10m/s and current of 0.5~1.5m/s. The leeway was derived by subtracting surface current velocity from target drifting velocity. The leeway rate of G/T 50ton vessel was found to be about 3.6% and the computed leeway speed equation was $U_L$=0.042 W - 0.034. The processed leeway angle data were deflected by $-30^{\circ}$~$40^{\circ}$ from the direction of ship drift.