• Title/Summary/Keyword: Shewhart

Search Result 104, Processing Time 0.026 seconds

Statistical design of Shewhart control chart with runs rules (런 규칙이 혼합된 슈와르트 관리도의 통계적 설계)

  • Kim, Young-Bok;Hong, Jung-Sik;Lie, Chang-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.3
    • /
    • pp.34-44
    • /
    • 2008
  • This research proposes a design method based on the statistical characteristics of the Shewhart control chart incorporated with 2 of 2 and 2 of 3 runs rules respectively. A Markov chain approach is employed in order to calculate the in-control and out-of-control average run lengths(ARL). Two different control limit coefficients for the Shewhart scheme and the runs rule scheme are derived simultaneously to minimize the out-of-control average run length subject to the reasonable in-control average run length. Numerical examples show that the statistical performance of the hybrid control scheme are superior to that of the original Shewhart control chart.

Design of Combined Shewhart-CUSUM Control Chart using Bootstrap Method (Bootstrap 방법을 이용한 결합 Shewhart-CUSUM 관리도의 설계)

  • 송서일;조영찬;박현규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • Statistical process control is used widely as an effective tool to solve the quality problems in practice fields. All the control charts used in statistical process control are parametric methods, suppose that the process distributes normal and observations are independent. But these assumptions, practically, are often violated if the test of normality of the observations is rejected and/or the serial correlation is existed within observed data. Thus, in this study, to screening process, the Combined Shewhart - CUSUM quality control chart is described and evaluated that used bootstrap method. In this scheme the CUSUM chart will quickly detect small shifts form the goal while the addition of Shewhart limits increases the speed of detecting large shifts. Therefor, the CSC control chart is detected both small and large shifts in process, and the simulation results for its performance are exhibited. The bootstrap CSC control chart proposed in this paper is superior to the standard method for both normal and skewed distribution, and brings in terms of ARL to the same result.

A study on Application of EWMA Control Chart for Manufacturing Processes (제조공정 관리를 위한 EWMA 관리도의 적용에 관한 연구)

  • Kim, Jong-Gurl;Kim, Dong-Nyuk
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.445-451
    • /
    • 2012
  • 제조공정에서 사용되어지는 SPC(Statistical Process Control)관리 기법은 가피원인을 탐지하여 변동을 감소시키는 통계적 공정관리 시스템이다. SPC의 대표적인 관리기법으로는 Shewhart관리도, Cusum관리도, EWMA관리도가 있으며 이러한 관리 기법들은 공정을 보다 안정적으로 관리 할 수 있도록 유지 및 예측하는데 사용 되어 진다. 본 논문에서는 일반적으로 사용되어 지는 Shewhart관리도와 공정 예측에 유리한 EWMA 관리도에 대해 연구해보고 공정변화에 민감하게 반응하는 EWMA 관리도의 적용 사례를 제시하고자 한다.

  • PDF

A statistical quality control for the dispersion matrix

  • Jo, Jinnam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.1027-1034
    • /
    • 2015
  • A control chart is very useful in monitoring various production process. There are many situations in which the simultaneous control of two or more related quality variables is necessary. When the joint distribution of the process variables is multivariate normal, multivariate Shewhart control charts using the function of the maximum likelihood estimator for monitoring the dispersion matrix are considered for the simultaneous monitoring of the dispersion matrix. The performances of the multivariate Shewhart control charts based on the proposed control statistic are evaluated in term of average run length (ARL). The performance is investigated in three cases, where the variances, covariances, and variances and covariances are changed respectively. The numerical results show that the performances of the proposed multivariate Shewhart control charts are not better than the control charts using the trace of the covariance matrix in the Jeong and Cho (2012) in terms of the ARLs.

Multivariate Shewhart control charts for monitoring the variance-covariance matrix

  • Jeong, Jeong-Im;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.617-626
    • /
    • 2012
  • Multivariate Shewhart control charts are considered for the simultaneous monitoring the variance-covariance matrix when the joint distribution of process variables is multivariate normal. The performances of the multivariate Shewhart control charts based on control statistic proposed by Hotelling (1947) are evaluated in term of average run length (ARL) for 2 or 4 correlated variables, 2 or 4 samples at each sampling point. The performance is investigated in three cases, that is, the variances, covariances, and variances and covariances are changed respectively.

Investigate Study on the relation between Multivariate SPC and Autoregressed Algorithm (다변량 SPC와 자기회귀알고리즘의 연계를 위한 조사연구)

  • Jung, Hae-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.675-693
    • /
    • 2011
  • We compare three Techniques control systems with The Investigate Study on the relation between Multivariate SPC and Autoregressed Algorithm. We also investigate Autoregressed Algorithm with relevant EWMA, CUSUM, Shewhart chart, Precontrol chart and Process Capacity.

  • PDF

Optimal design of a nonparametric Shewhart-Lepage control chart (비모수적 Shewhart-Lepage 관리도의 최적 설계)

  • Lee, Sungmin;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.339-348
    • /
    • 2017
  • One of the major issues of statistical process control for variables data is monitoring both the mean and the standard deviation. The traditional approach to monitor these parameters is to simultaneously use two seperate control charts. However there have been some works on developing a single chart using a single plotting statistic for joint monitoring, and it is claimed that they are simpler and may be more appealing than the traditonal one from a practical point of view. When using these control charts for variables data, estimating in-control parameters and checking the normality assumption are the very important step. Nonparametric Shewhart-Lepage chart, proposed by Mukherjee and Chakraborti (2012), is an attractive option, because this chart uses only a single control statistic, and does not require the in-control parameters and the underlying continuous distribution. In this paper, we introduce the Shewhart-Lepage chart, and propose the design procedure to find the optimal diagnosis limits when the location and the scale parameters change simultaneously. We also compare the efficiency of the proposed method with that of Mukherjee and Chakraborti (2012).

A Study on the Adjustment Synthetic Control Chart Pattern for Detecting Shifts using Individual Observations in Start-Up Process (초기공정에서 공정변화에 대한 개별 관측치를 이용한 수정된 합성 관리도 연구)

  • 지선수
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.53-58
    • /
    • 2002
  • This paper presents a adjustment synthetic control chart that is an integration of the Shewhart X chart and the conforming run length(CRL) chart. The application of the adjustment synthetic control chart my therefore substantially enhance the effectiveness process control for manufacturing. In the synthetic control chart, denotes the average number of the X sample required to detect a process shift. The synthetic control chart outperforms the EWM chart and the X chart when σ is greater than 0.75σ. And the X-CRL charts suggested above evaluate using the conditional probability.

  • PDF

A Comparative Analysis on the Efficiency of Monitoring between EWMA and Shewhart Chart in Instrumental Process with Autocorrelation (자기상관이 있는 장치 공정에서 EWMA와 Shewhart 관리도와의 모니터링 효율성 비교 분석)

  • Cho, Jin-Hyung;Oh, Hyun-Seung;Lee, Sae-Jae;Jung, Su-Il;Lim, Taek;Baek, Seong-Seon;Kim, Byung-Keug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.118-125
    • /
    • 2012
  • When monitoring an instrumental process, one often collects a host of data such as characteristic signals sent by a sensor in short time intervals. Characteristic data of short time intervals tend to be autocorrelated. In the instrumental processes often the practice of adjusting the setting value simply based on the previous one, so-called 'adjacent point operation', becomes more critical, since in the short run the deviations are harder to detect and in the long run they have amplified consequences. Stochastic modelling using ARIMA or AR models are not readily usable here. Due to the difficulty of dealing with autocorrelated data conventional practice is resorting to choosing the time interval where autocorrelation is weak enough then to using I-MR control chart to judge the process stability. In the autocorrelated instrumental processes it appears that using the Shewhart chart and the time interval data where autocorrelation is relatively not existent turns out to be a rather convenient and very useful practice to determine the process stability. However in the autocorrelated instrumental processes we intend to show that one would presumably do better using the EWMA control chart rather than just using the Shewhart chart along with some arbitrarily intervalled data, since the former is more sensitive to shifts given appropriate weights.

INFLUENCE OF SPECIAL CAUSES ON STOCHASTIC PROCESS ADJUSTMENT

  • Lee, Jae-June;Mihye Ahn
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.219-231
    • /
    • 2004
  • Process adjustment is a complimentary tool to process monitoring in process control. Although original intention of process adjustment is not identifying a special cause, detection and elimination of special causes may lead to significant process improvement. In this paper, we examine the impact of special causes on process adjustment. The bias in the adjusted output process is derived for each type of special causes, and average run length (ARL) of the Shewhart chart applied to the adjusted output is computed for each special cause types. Numerical results are illustrated for the ARL of the Shewhart chart, thereupon seriousness of special causes on process adjustment is evaluated for each type of special causes.