• Title/Summary/Keyword: Sheath blight

Search Result 111, Processing Time 0.022 seconds

Synthesis and biological activities of Chloronicotinyl derivatives (Chloronicotinyl 유도체의 합성 및 생물활성 검정)

  • Park, Su-Jin;Kim, In-Hae;Choi, In-Young;Kim, Song-Mun;Han, Dae-Sung;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.1
    • /
    • pp.20-28
    • /
    • 1999
  • Chloronicotinyl derivatives were synthesized by substitution of amino in 3-pyridylmethylamine with phosphite groups and their insecticidal and fungicidal activities were determined. At 500 ppm, compound 4 with methyl and butyl group in phosphonate and compound 5, 6, 7, and 8 with two butyl, 2,2,2-trifluorotehtyl, 2-ethylhexyl, phenyl, respectively, in phosphonate showed 90% insecticidal activities against brown plant-hopper (Nilaparvate lugens). These compounds showed, however, poor insecticidal activities against diamond-back moth (Plutella xylostella) and two-spotted spider mite (Tetranychus urticae) (<65%), suggesting that insecticidal activity of chloronicotinyl derivatives containing phosphorus moieties are species-dependent. Newly synthesized chloronicotinyl derivatives with halogen and/or heterocycle (compound $10{\sim}21$) did not show insecticidal activities. We also determined fungicidal activity of the synthesized chloronicotinyl derivatives against rice sheath blight (Pyricularia grisea), cucumber gray mold (Bortytis cinerea), tomato late blight (Phytophthora infestans), wheat leaf rust (Puccinia recondita), and barley powdery mildew (Erysiphe graminis). Compound 10 with butyl and 4-nitrophenyl in phosphonate at 10 ppm showed 85% fungicidal activity against rice blast, suggesting that chloronicotinyl derivatives containing phosphorus moieties could be developed as a fungicidal agent of a novel chemical structure.

  • PDF

Isolation and identification of antifungal compounds from Spatholobus suberectus Dunn (계혈등(Spatholobus suberectus Dunn)으로부터 항균활성 물질의 분리 및 구조결정)

  • Hwang, Joo-Tae;Park, Young-Sik;Kim, Young-Shin;Kim, Jin-Cheol;Lim, Chi-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.209-216
    • /
    • 2012
  • In the continued research on natural fungicides for control of plant diseases by using plant-derived products, we found that Spatholobus suberectus Dunn had a strong fungicidal activity against several plant pathogens. S. suberectus (1 kg) was extracted with 80% aqueous MeOH and then the concentrated extract was partitioned with n-hexane, EtOAc, n-BuOH and $H_2O$ successively. The four layers were tested their disease contron efficacies against 6 plant diseases such as rice blast (RCB), rice sheath blight (RSB), tomato grey mold (TGM), tomato late blight (TLB), wheat leaf rust (WLR), and barley powdery mildew (BPM). The EtOAc fraction was highly active showing over 80% control against RCB, TGM, TLB, and BPM. By using silica gel chromatography, preparative TLC and HPLC, six compounds that were expected to have antifungal activity were separated. Their chemical structures were identified as ethanone, hydroxytyrosol, epicatechin, procyanidin B2, dimethoxy daizein and formononetin by ESI-MS, $^1H$-NMR, $^{13}C$-NMR, and 2D-NMR spectroscopic analyses. The chemicals except epicatechin were first reported in S. suberectus. Study on in vitro and in vivo antifungal activities of the isolated compounds is in progress.

Synthesis of trifluoromethylated dihydro-1,4-dithiin carboxamides and their antifungal activities (Trifluoromethylated Dihydro-1,4-dithiin carboxanilide 유도체의 합성 및 살균활성)

  • Hahn, Hoh-Gyu;Nam, Kee-Dal;Chang, Kee-Hyuk;Lee, Seon-Woo;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.2
    • /
    • pp.26-32
    • /
    • 2001
  • [ ${\alpha},{\beta}$ ]-Unsaturated carboxamides 12 with trifluromethylated dihydro-1,4-dithiins were synthesized for the purpose of development of new agrochemical fungicide. Chlorination of trifluoromethylated ${\beta}$-ketoester 4 followed by tile reaction with 1,2-ethanedithiol gave intermediate 1,4-dithiane 9. Without purification of 9 substitution of hydroxy by chlorine followed by dehydrochlorination in the presence of triethylamine afforded trifluoromethylated dihydro-1,4-dithiin ethyl ester 7. Activation of the hydroxy of the carboxylic acid 10 obtained from the hydrolysis of 7 and then reacted with various amines gave the corresponding trifluoromethylated dihydro-1,4-dithiin carboxamides. Antifungal screening (in vivo) against typical plant diseases, Rice Blast, Rice Sheath Blight, Cucumber Gray Mold, Tomato Late Blight, Wheat Leaf Rust, and Barley Powdery Mildew of the synthesized compounds was carried out. As a result, most of the compounds shlowed weak antifungal activities and some compounds in which isopropyl group was substituted in meta of the phenyl showed antifungal activity (99%) at 250 ppm against the disease Wheat Leaf Rust.

  • PDF

Identification and Chemical Control of Gray Snow Molds Caused by Typhula spp. on Golf Course in Korea (우리나라의 골프코스에서 Typhula spp.에 의해 발생하는 설부병의 동정 및 방제)

  • Kim, Jeong-Ho;Shim, Gyu-Yul;Lee, Hye-Min;Moon, Hyo-Sun;Kim, Young-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.147-154
    • /
    • 2007
  • In March of 2004, gray snow mold (Typhula blight) caused by Typhula spp. occurred on perennial ryegrass (Lolium perenne L.) and Kentucky bluegrass (Poo pratensis L.) at MuJu golf courses in Jeonbuk Province. Leaves in the affected areas were matted together and frequently covered with white to grayish mycelia. Sclerotia were formed on the leaf blade, leaf sheath, or crown regions. The fungus isolated from the diseased leaf formed whitish mycelium, clamp connections, and light pink to brown, irregular-shaped small sclerotia of less than 1.4 mm in diameter, which are characteristic to Typhula incarnata. Optimum temperature ranges for mycelial growth were $5^{\circ}C$ to $15^{\circ}C$. The causal organism was confirmed to be T. incarnata as the partial sequence of its ribosomal RNA ITS1 (internal transcribed spacer) region was 91% homologous to those of T. incarnata in GenBank database. Out of the 14 fungicides tested fur antifungal activity in vitro, 10 fungicides including iprodione, tebuconazole, polyoxin D, flutolanil, hexaconazole, tolclofos-methyl, fosetyl-Al, mepronil, pencycuron+tebuconazole, and fenarimol completely inhibited fungal growth at their recommended concentrations. In the field test, these fungicides and others such as thifluzamide and thiram effectively controlled the gray snow mold of turfgrass with some variable degrees of control efficacies.

Biocontrol of Rice Diseases by Microorganisms (미생물을 활용한 친환경적인 벼 병해 방제법)

  • Kim, Jung-Ae;Song, Jeong-Sup;Jeong, Min-Hye;Park, Sook-Young;Kim, Yangseon
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.129-136
    • /
    • 2021
  • Rice is responsible for the stable crop of 3 billion people worldwide, about half of Asian depends on it, and rice is grown in more than 100 countries. Rice diseases can lead to devastating economic loss by decreasing yield production, disturbing a stable food supply and demand chain. The most commonly used method to control rice disease is chemical control. However, misuse of chemical control can cause environmental pollution, residual toxicity, and the emergence of chemical-resistant pathogens, the deterioration of soil quality, and the destruction of biodiversity. In order to control rice diseases, research on alternative biocontrol is actively pursued including microorganism-oriented biocontrol agents. Microbial agents control plant disease through competition with and antibiotic effects and parasitism against plant pathogens. Microorganisms isolated from the rice rhizosphere are studied comprehensively as biocontrol agents against rice pathogens. Bacillus sp., Pseudomonas sp., and Trichoderma sp. were reported to control rice diseases, such as blast, sheath blight, bacterial leaf blight, brown spot, and bakanae diseases. Here we reviewed the microorganisms that are studied as biocontrol agents against rice diseases.

Investigation on Disease Incidence and Yield of Rice Cultivars for Use in Processing of Eco-friendly-grown Germinated Brown Rice (친환경 발아현미 생산에 적합한 병 저항성 및 생산성이 우수한 벼 품종선발)

  • Oh, Sea-Kwan;Cheon, Geum Su;Lee, Jeong Heui;Lee, Dong-Hyun
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.399-401
    • /
    • 2012
  • In order to select the optimum rice cultivars for the use in processing of eco-friendly-grown germinated brown rice (GBR), disease incidences and yields in rice cultivars bred in National Institute of Crop Science were investigated in eco-friendly paddy fields (Gokseong, Jeonnam Province, Korea) during the years 2009-2011. The incidences of rice sheath blight and blast on the cultivar Samgwang were higher than those on one reference cultivar Chucheong, but much lower than those on the other reference cultivar Gosihikkali. The cultivars Keunnun and Haiami selected as special rices showed disease incidences and yields similar to the reference rice cultivars Chucheong and Gosihikkali. These results indicated that the cultivars Samkwang, Keunnun, and Haiami can be selected as rice cultivars for the use of in processing of eco-friendly grown GBR because their disease incidences and yields in Gokseong may be similar to the reference cultivars.

A Web-based Information System for Plant Disease Forecast Based on Weather Data at High Spatial Resolution

  • Kang, Wee-Soo;Hong, Soon-Sung;Han, Yong-Kyu;Kim, Kyu-Rang;Kim, Sung-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • This paper describes a web-based information system for plant disease forecast that was developed for crop growers in Gyeonggi-do, Korea. The system generates hourly or daily warnings at the spatial resolution of $240\;m{\times}240\;m$ based on weather data. The system consists of four components including weather data acquisition system, job process system, data storage system, and web service system. The spatial resolution of disease forecast is high enough to estimate daily or hourly infection risks of individual farms, so that farmers can use the forecast information practically in determining if and when fungicides are to be sprayed to control diseases. Currently, forecasting models for blast, sheath blight, and grain rot of rice, and scab and rust of pear are available for the system. As for the spatial interpolation of weather data, the interpolated temperature and relative humidity showed high accuracy as compared with the observed data at the same locations. However, the spatial interpolation of rainfall and leaf wetness events needs to be improved. For rice blast forecasting, 44.5% of infection warnings based on the observed weather data were correctly estimated when the disease forecast was made based on the interpolated weather data. The low accuracy in disease forecast based on the interpolated weather data was mainly due to the failure in estimating leaf wetness events.

Characterization of D-Glucose ${\alpha}$-1-Phosphate Uridylyltransferase (VldB) and Glucokinase (VIdC) Involved in Validamycin Biosynthesis of Streptomyces hygroscopicus var. limoneus KCCM 11405

  • Seo Myung-Ji;Im Eun-Mi;Singh Deepak;Rajkarnikar Arishma;Kwon Hyung-Jin;Hyun Chang-Gu;Suh Joo-Won;Pyun Yu-Ryang;Kim Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1311-1315
    • /
    • 2006
  • Aminocyclitol antibiotic validamycin A, a prime control agent for sheath blight disease of rice plants, is biosynthesized by Streptomyces hygroscopicus var. limoneus. Within the validamycin biosynthetic gene cluster, vldBC forms an operon of vldABC with vidA, the gene encoding 2-epi-5-epi-valiolone synthase. Biochemical studies, employing the recombinant proteins from Escherichia coli, established VldB and VldC as D-glucose $\alpha$-1-phosphate uridylyltransferase and glucokinase, respectively. This finding substantiates that the validamycin biosynthetic gene cluster harbors genes encoding the enzymes for UDP-glucose formation from glucose. Therefore, we propose that validamycin biosynthesis employs its own catalysts to generate UDP-glucose, but not depending on the primary metabolism.

Studies on the Antifungal Antibiotics Produced by a Streptomyces sp. (Part 1) Selection of the Antibiotics Producing Organism and Isolation of the Antibiotics (Streptomyces sp. 가 생산하는 항진균성 항생물질에 관한 연구(제 1 보) 생산균주의 선별과 항진균성 항생물질의 분리정제)

  • Bae, Moo;Ko, Young-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.1
    • /
    • pp.33-37
    • /
    • 1982
  • The work has been carried out for the development of antifungal antibiotics possessing curative effect in the control of sheath blight disease of rice plant. Soil samples were collected from over 1600 spots throughout the country. More than 1300 specimens which seem to be the genus Streptomyces were isolated from the soil samples. Screening procedures consist of respective processes by four steps. Those are growth inhibition test in liquid culture, paper disk method, dendroid test and green house test. 102 isolates appeared to be active against Pellicularia sasakii when all specimens isolated were examined by the first growth inhibition test. Finally a strain of Streptomyces forming strong antifungal substances against P. sasakii was selected from a soil sample of Mt. Soyo, Kyeongi Province. Antifungal substances formed by the strain were isolated and purified from the culture broth and examined for antimicrobial activities as to be specific against fungi but not active on bacterial growth.

  • PDF

Investigation of Quorum Sensing-Dependent Gene Expression in Burkholderia gladioli BSR3 through RNA-seq Analyses

  • Kim, Sunyoung;Park, Jungwook;Choi, Okhee;Kim, Jinwoo;Seo, Young-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1609-1621
    • /
    • 2014
  • The plant pathogen Burkholderia gladioli, which has a broad host range that includes rice and onion, causes bacterial panicle blight and sheath rot. Based on the complete genome sequence of B. gladioli BSR3 isolated from infected rice sheaths, the genome of B. gladioli BSR3 contains the luxI/luxR family of genes. Members of this family encode N-acyl-homoserine lactone (AHL) quorum sensing (QS) signal synthase and the LuxR-family AHL signal receptor, which are similar to B. glumae BGR1. In B. glumae, QS has been shown to play pivotal roles in many bacterial behaviors. In this study, we compared the QS-dependent gene expression between B. gladioli BSR3 and a QS-defective B. gladioli BSR3 mutant in two different culture states (10 and 24 h after incubation, corresponding to an exponential phase and a stationary phase) using RNA sequencing (RNA-seq). RNA-seq analyses including gene ontology and pathway enrichment revealed that the B. gladioli BSR3 QS system regulates genes related to motility, toxin production, and oxalogenesis, which were previously reported in B. glumae. Moreover, the uncharacterized polyketide biosynthesis is activated by QS, which was not detected in B. glumae. Thus, we observed not only common QS-dependent genes between B. glumae BGR1 and B. gladioli BSR3, but also unique QS-dependent genes in B. gladioli BSR3.