• Title/Summary/Keyword: Shear-span Depth Ratio

Search Result 228, Processing Time 0.028 seconds

Shear Performance of High-Strength Reinforced Concrete Beams using Fly-Ash Artificial Lightweight Aggregate (석탄회 인공경량골재를 사용한 고강도 콘크리트 보의 전단성능)

  • Chung, Soo-Young;Yun, Hyun-Do;Park, Wan-Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.233-242
    • /
    • 2002
  • This study is to investigate experimentally the shear capacity of high-strength lightweight-aggregate reinforced concrete beams subjected to monotonic loading. Ten beams made of fly-ash artificial lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. The variables in the test program were longitudinal reinforcement ratio; which variabled (between 0.83 and 1.66 percent), shear span-to-depth ratio (a/d=1.5, 2.5 and 3.5), and web reinforcement(0, 0.137, 0.275 and 0.554 percent). Six of the test beams had no web reinforcement and the other six had web reinforcement along the entire length of the beam. Most of beams failed brittly by distinct diagonal shear crack, and have reserved shear strength due to the lack of additional resisting effect by aggregate interlocking action after diagonal cracking. Test results indicate that the ACI Building Code predictions of Eq. (11-3) and (11-5) for lightweight concretes are unconservative for beams with tensile steel ratio of 1.66, a/d ratios greater than 2.5 without web reinforcement. Through a more rational approach to compute the contribution of concrete to the shear capacity, a postcracking shear strength in concrete is observed.

Shear strengthening of RC beams with Basalt Fiber Reinforced Polymer (BFRP) composites

  • Kar, S.;Biswal, K.C.
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.93-104
    • /
    • 2020
  • Basalt fiber is an eco-friendly fiber and comparatively newer to the world of fiber-reinforced polymer (FRP) composites. A limited number of studies have been reported in the literature on the strengthening of reinforced concrete (RC) beams with basalt fiber reinforced polymer (BFRP). The present experimental work explores the feasibility of using the BFRP strips for shear strengthening of the RC beams. The strengthening schemes include full wrap and U-wrap. A simple mechanical anchorage scheme has been introduced to prevent the debonding of U-wrap as well as to utilize the full capacity of the BFRP composite. The effect of varying shear span-to-effective depth (a/d) ratio on the behavior of shear deficient RC beams strengthened with BFRP strips under different schemes is examined. The RC beams were tested under a four-point loading system. The study finds that the beams strengthened with and without BFRP strips fails in shear for a/d ratio 2.5 and the enhancement of the shear capacity of strengthened beams ranges from 5% to 20%. However, the strengthened beams fail in flexure, and the control beam fails in shear for a higher a/d ratio, i.e., 3.5. The experimental results of the present study have been compared with the analytical study and found that the latter gives conservative results.

Failure Behavior of FRP RC Beams without Shear Reinforcements (전단 보강이 없는 FRP RC보의 파괴 거동)

  • Lee, Jae-Hoon;Son, Hyun-A;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.199-208
    • /
    • 2010
  • In order to substitute FRP bar for steel bar in new structures, it is necessary to establish a reliable design code. But relatively little research has been conducted on the material in Korea. So, a total of 22 beam specimens (18 GFRP reinforced concrete and 4 conventional steel reinforced concrete) were constructed and tested. In the first phase of the experiment, it was carried out to observe flexural behavior, and collect deflection and crack data. In order to eliminate of the uncertainty by the shear reinforcements and induce flexural failure mode, any stirrup were not used and only shear span-depth ratio were adjusted. However, almost beams were broken by shear and the ACI 440.1R, CSA S806, which were used to design test beams, showed considerable deviation between prediction and test results of shear strengths. Therefore in the second phase of the study, shear failure modes and behavior were observed. A standard specimen had dimensions of 3,300 mm long ${\times}$ 800 mm wide ${\times}$ 200 mm effective depth. Clear span and shear span were 2,800 mm, 1,200 mm respectively. Control shear span-depth ratio was 6.0. Four-point bending test over simple support was conducted. Variables of the specimens were concrete compressive strength, type and elastic modulus of reinforcement, shear span-depth ratio, effective reinforcement ratio, the effect of bundle placing method and cover thickness.

Shear Crack Control for High Strength Reinforced Concrete Beams Considering the Effect of Shear-Span to Depth Ratio of Member

  • Chiu, Chien-Kuo;Ueda, Takao;Chi, Kai-Ning;Chen, Shao-Qian
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.407-424
    • /
    • 2016
  • This study tests ten full-size simple-supported beam specimens with the high-strength reinforcing steel bars (SD685 and SD785) using the four-point loading. The measured compressive strength of the concrete is in the range of 70-100 MPa. The main variable considered in the study is the shear-span to depth ratio. Based on the experimental data that include maximum shear crack width, residual shear crack width, angle of the main crack and shear drift ratio, a simplified equation are proposed to predict the shear deformation of the high-strength reinforced concrete (HSRC) beam member. Besides the post-earthquake damage assessment, these results can also be used to build the performance-based design for HSRC structures. And using the allowable shear stress at the peak maximum shear crack width of 0.4 and 1.0 mm to suggest the design formulas that can ensure service-ability (long-term loading) and reparability (short-term loading) for shear-critical HSRC beam members.

An Experimental Study on the Shear behavior of High Strength light-aggregate Reinforced Concrete Beam (고강도 경량 콘크리트 보의 전단거동에 관한 실험적 연구)

  • 박완신;진인철;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.385-388
    • /
    • 1999
  • This study is to investigate experimentally the shear capacity of high-strength reinforced concrete beams subjected to monotonic loading. Nine reinforced concrete beams using high strength concrete $(f'c=380kg/\textrm{cm}^2)$ are tested to determine their diagonal cracking and ultimate shear capacity. The main variables are shear span-depth ratio a/d=1.5, 2.5, 3.5, and shear reinforcement ratio. All specimens are 170mm wide and have a total depth of 300mm. The test results indicate that ACI 318-95(b) Code for shear capacity gave closest agrement with the exsprimental results. The beams with a shear spear-depth ratio 1.5 and 2.5. ACI 318-95 Code underestimates shear strength carried by vertical shear reinforcements.

Effect of the Size and Location of a Web Opening on the Shear Behavior of High-Strength Reinforced Concrete Deep Beams (고강도 철근콘크리트 깊은 보의 전단거동에 대한 개구부 크기 및 위치의 영향)

  • Yang, Keun-Hyeok;Eun, Hee-Chang;Chung, Heon-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2003
  • The purpose of this experimental study is to investigate the relationship of the shear behavior and the variety of width, depth and location of an opening in reinforced concrete deep beams with rectangular web openings, and to present an improved shear strength equation of those members. The main parameters considered were concrete strength(fck), shear span-to-overall depth ratio(a/h), and the size and vortical position of the web openings. Twenty five deep beams were tested under two symmetric loading-points. Test results showed that the shear behavior of deep beams with web openings was influenced by a/h and the size of opening. In addition, the KCI shear design provision is a tendency to be more unconservative according to the increase in a/h and the area-ratio of opening to shear span(Ao/Ash). Based on the concrete strut action of top and bottom member of an opening and the tie action of longitudinal reinforcement, a proper design equation which closely predicts the capacity of deep beams with rectangular openings is developed.

Prediction of the Shear Strength of FRP Strengthened RC Beams (I) - Development and Evaluation of Shear strength model - (FRP로 전단 보강된 철근콘크리트 보의 전단강도 예측 (I) - 전단강도 예측 모델제안 및 검증 -)

  • Sim Jong-Sung;Oh Hong-Seob;Moon Do-Young;Park Kyung-Dong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.343-351
    • /
    • 2005
  • This study developed a shear strength prediction model of FRP strengthened reinforced concrete beams in shear. The primary design parameters were shear crack angle and shear span to depth ratio of FRP reinforcement. Of primary concern In the suggested model was the FRP debonding failure, which Is a typical fracture mode of RC beams strengthened with FRP, The proposed model used a crack sliding model based on modified plasticity theory. To address the effect of the shear span to depth ratio, the arch action was considered in the proposed model. The proposed model was applied to RC beams strengthened with FRP. The results showed that the proposed model agree with test results.

A Study of Shear Resistance Characteristics using Shear Test Data with Stirrup (전단보강철근이 있는 기존 전단실험 자료를 이용한 전단특성에 관한 연구)

  • Shin Geun Ok;Lee Chang Shin;Jeong Jae Pyong;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.403-406
    • /
    • 2005
  • This paper deals with the propriety of the shear test data with stirrup reported in ACI and ASCE structural journal and the shear resistance characteristics affected by compressive strength of concrere($f_{ck}$), shear span-to-depth ratio (a/d), tensile reinforcement ratio($\rho$), and shear reinforcement ratio($rho_{v}$). The analysis was accomplished by the 242 shear test data. The test data include the flexural failure data around 40$\%$.

  • PDF

Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 (II) Validity Evaluation (전단경간비가 3 이하인 철근콘크리트 보의 스트럿-타이 모델 및 하중분배율(II) 타당성 평가)

  • Chae, Hyun-Soo;Yun, Young Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.267-278
    • /
    • 2016
  • In this study, the ultimate strength of 335 simply supported reinforced concrete beams with shear span-to-effective depth ratio of less than 3 was evaluated by the ACI 318-14's strut-tie model approach implemented with the indeterminate strut-tie models and load distribution ratios of the companion paper. The ultimate strength of the beams was also estimated by using the experimental shear strength models, the theoretical shear strength models, and the current strut-tie model design codes. The validity of the proposed strut-tie models and load distribution ratios was examined by comparing the strength analysis results classified according to the prime design variables of the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete.

An Experimental Study on Shear Capacity of High-Strength Concrete Beams With Shear Span-Depth Ratio Between 1.5 and 2.5 (전단-스팬비가 작은 고강도 철근콘크리트 보의 전단성능에 관한 실험적 연구)

  • 신성우;문정일;박희민;이승훈;오정근;임남재
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.4
    • /
    • pp.171-179
    • /
    • 1992
  • 본 연구에서는 전단-스팬비가 1.5에서 2.5 범위의 고강도 콘크리트 보에 대해 기존 규준식의 안전여부를 확인하고, 사균열강도와 극한전단강도를 결정하기 위해 총 15개의 시험체를 제작하여 실험적 연구를 수행하였다. 주요변수는 전단-스팬비(a/d=1.5, 2.0, 2,5)와 수직전단철근비(Rv=0, 25, 50, 75, 100%, Rv=[$ ho$v / $\rho$v(ACI)] 100)이며, 콘크리트 압축강도(f'c=747kg/$ extrm{cm}^2$와 인장철근비($\rho$w=0.0377)는 일정하다. 실험결과 본 연구의 전단-스팬비의 범위에서 ACI 318-89 (11-31)식은 일반적으로 수직전단철근에 의해 저항되는 전단강도를 상당히 과소평가하는 것으로 나타났다. 따라서 수직전단철근에 대한 영향이 재고되어야 할 것이다.