• Title/Summary/Keyword: Shear plate

Search Result 1,763, Processing Time 0.028 seconds

An Experimental Study on Suction Force of Plate Anchor Embedded in Bentonite (벤토나이트에 근입된 앵커의 흡입력에 관한 실험적 연구)

  • 이준대
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.97-102
    • /
    • 2001
  • Anchors are often used in construction of foundations such as transmission towers to resist uplifting forces. When plate anchors are embedded in soft clay, they may undergo a deformation under the pressure of sustained load. In soft saturated clays, the suction force can be a large par of the ultimate uplift capacity. This study is to present recent laboratory model test results conducted to evaluate the nature of variation of the suction force for plate anchors with shear strength and embedment ratio. The ratio of F$_{s}$Q$_{n}$ versus H/D in bentonite decreases with the increase of the embedment ratio.o.o.

  • PDF

DUFOUR AND HEAT SOURCE EFFECTS ON RADIATIVE MHD SLIP FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF CHEMICAL REACTION

  • VENKATESWARLU, M.;BABU, R. VASU;SHAW, S.K. MOHIDDIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.245-275
    • /
    • 2017
  • The present investigation deals, Dufour and heat source effects on radiative MHD slip flow of a viscous fluid in a parallel porous plate channel in presence of chemical reaction. The non-linear coupled partial differential equations are solved by using two term perturbation technique subject to physically appropriate boundary conditions. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall. It is observed that the effect of Dufour and heat source parameters decreases the velocity and temperature profiles.

The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT

  • Arshid, Ehsan;Khorshidvand, Ahmad Reza;Khorsandijou, S. Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.97-112
    • /
    • 2019
  • Using the classical, first order and third order shear deformation plates theories the motion equations of an undrained porous FG circular plate which is located on visco-Pasternak elastic foundation have been derived and used for free vibration analysis thereof. Strains are related to displacements by Sanders relationship. Fluid has saturated the pores whose distribution varies through the thickness according to three physically probable given functions. The equations are discretized and numerically solved by the generalized differential quadrature method. The effect of porosity, pores distribution, fluid compressibility, viscoelastic foundation and aspect ratio of the plate on its vibration has been considered.

Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory

  • Yahea, Hussein T.;Majeed, Widad I.
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-199
    • /
    • 2021
  • A simple solution for free vibration of cross-ply and angle-ply laminated composite plates in a thermal environment is investigated using a basic trigonometric shear deformation theory. By application of trigonometric four variable plate theory, the transverse displacement is subdivided into bending and shear components, the present theory's number of unknowns and governing equations is reduced, making it easier to use. Hamilton's Principle is extended to derive the equations of motion of the plates using Navier's double trigonometric series, a closed-form solution is obtained; the primary conclusion is that simple solution is obtained with good results accuracy when compared with previously published results, and the natural frequency will differ depending on, environment temperature, thickness ratio, and lamination angle, as well as the aspect ratio of the plate.

p-Version Finite Element Model of Cracked Plates Including Shear Deformation under Flexural Behavior (휨거동을 받는 균열판의 전단변형을 고려한 p-Version 유한요소모델)

  • Lee, C.G.;K.S.Woo;Shin, Y.S.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.16-23
    • /
    • 1993
  • The new p-version crack model is proposed to estimate the bending stress intensity factors of the thick cracked plate under flexure. The proposed model is based on high order theory and $C^{\circ}$-plate element including shear deformation. The displacements fields are defined by integrals of Legerdre polynomials which can be classified into three groups such as basic mode, side mode and internal mode. The computer implementation allows arbitrary variations of p-level up to a maximum value of 10. The bending stress intensity factors are computed by virtual crack extention approach. The effects of ratios of thickness to crack length(h/a), crack length to width(a/W) and boundary conditions are investigated. Very good agreement with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

Free vibration analysis of FG carbon nanotube reinforced composite plates using dynamic stiffness method

  • Shahabeddin Hatami;Mohammad Reza Bahrami
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.135-148
    • /
    • 2024
  • This paper analytically investigates the free vibration analysis of functionally graded-carbon nanotube reinforced composite (FG-CNTRC) plates by dynamic stiffness method (DSM). The properties of CNTRC are determined with the extended rule of mixture. The governing differential equations of motion based on the first-order shear deformation theory of CNTRC plate are derived using Hamilton's principle. The FG-CNTRC plates are studied for a uniform and two different distributions of carbon nanotubes (CNTs). The accuracy and performance of the DSM are compared with the results obtained from closed closed-form and semi-analytical solution methods in previous studies. In this study, the effects of boundary condition, distribution type of CNTs, plate aspect ratio, plate length to thickness ratio, and different values of CNTs volume fraction on the natural frequencies of the FG-CNTRC plates are investigated. Finally, various natural frequencies of the plates in different conditions are provided as a benchmark for comparing the accuracy and precision of the other analytical and numerical methods.

Thermal buckling of porous FGM plate integrated surface-bonded piezoelectric

  • Mokhtar Ellali;Khaled Amara;Mokhtar Bouazza
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.171-186
    • /
    • 2024
  • In the present paper, thermal buckling characteristics of functionally graded rectangular plates made of porous material that are integrated with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and constant applied actuator voltage are investigated by utilizing a Navier solution method. The uniform temperature rise loading is considered. Thermomechanical material properties of FGM plates are assumed to be temperature independent and supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM) which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. The governing differential equations of stability for the piezoelectric FGM plate are derived based on higher order shear deformation plate theory. Influences of several important parameters on the critical thermal buckling temperature are investigated and discussed in detail.

Shear Buckling Strength and Behaviors of Steel Plate Girder with Asymmetrical Shear Resistant Web Panel by Local Corrosion (국부 부식손상에 의하여 비대칭 전단저항 복부단면을 가진 강거더의 전단강도 및 거동평가)

  • Lee, Myoung Jin;Ahn, Jin Hee;Kim, In Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.105-118
    • /
    • 2014
  • The number of the deteriorated bridge has been sharply increased due to the increase in the bridge service period in Korea. Local corrosion problem of structural member can be occurred according to atmospheric corrosion environments based on the installation location of steel bridges. Especially, in case of the plate girder bridge, corrosion damage is concentrated on the web panel and stiffener at girder end. An asymmetrical shear resistant web section in the plate girder bridge can be caused from the local corrosion of the web panel, because local corrosion is not symmetrically occurred to the bridge. In this study, therefore, the shear buckling strength and behavior of a plate girder with asymmetrically corroded web panel was numerically evaluated using FE analysis, which was considering an aspect ratio and corrosion damage level of web panel. The shear buckling strength reduction of an asymmetrical shear resistant web panel was compared and evaluated according to corroded volume ratio for a web panel and for diagonal tension field of a web panel.

Simplified method for prediction of elastic-plastic buckling strength of web-post panels in castellated steel beams

  • Liu, Mei;Guo, Kangrui;Wang, Peijun;Lou, Chao;Zhang, Yue
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.671-684
    • /
    • 2017
  • Elastic-plastic shear buckling behaviors of the web-post in a Castellated Steel Beam (CSB) with hexagonal web openings under vertical shear force were investigated further using Finite Element Model (FEM) based on a sub-model, which took the upper part of the web-post under horizontal shear force to represent the whole web-post under vertical shear force. A simplified design method for the web-post elastic-plastic shear buckling strength was proposed based on simulation results of the sub-model. Proper boundary conditions were applied to the sub-model to assure that its behaviors were identical to those of the whole web-post. The equation to calculate the thin plate elastic shear buckling strength was adopted as the basic form to build the design equation for elastic-plastic buckling strength of the sub-model. Parameters that might affect the elastic-plastic shear buckling strength of the whole web-post were studied. After obtaining the vertical shear buckling strength of a sub-model through FEM, the shear buckling coefficient k can be obtained through the back analysis. A practical calculation method for k was proposed through curving fitting the parameter study results. The elastic-plastic shear buckling strength of the web-post calculated using the proposed shear buckling coefficient k agreed well with that obtained from the FEM and test results. And it was more precise than those obtained from EC3 based on the strut model.

Strength Prediction Model for Flat Plate-Column Connections (플랫 플레이트 내부 접합부의 강도산정모델)

  • 최경규;박홍근;안귀용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.897-902
    • /
    • 2002
  • The failure of flat plate connection is successive failure process accompanying with stress redistribution, hence it is necessary to compute the contributions of each resistance components at ultimate state. In the present study, the interactions of resultant forces at each faces of connection, i.e. shear, bending moment and torsional moment are considered in the assessment of strength of slab. As a result the strength prediction model for connection is made up as combination of bending resistance, shear resistance and torsional resistance. The proposed method is verified by the experimental data and numerical data of continuous slabs.

  • PDF