• 제목/요약/키워드: Shear mode

검색결과 1,280건 처리시간 0.024초

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • 제7권4호
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.

초음속 유동에서 기저유동의 Detached Eddy Simulation (Detached Eddy Simulation of Base Flow in Supersonic Mainstream)

  • 신재렬;문성영;원수희;최정열
    • 한국항공우주학회지
    • /
    • 제37권10호
    • /
    • pp.955-966
    • /
    • 2009
  • 초음속 유동장 내의 축대칭 기저유동에 DES 기법을 적용하였다. 이 기법은 RANS 모드에서는 Spalart-Allmaras (S-A) 난류 모델을 사용하고, Large-eddy simulation (LES) 모드에서는 부격자 모델을 기반으로 하고 있다. LES 보다 비교적 적은 비용을 갖는 DES 기법을 사용하여 기저 유동장과 기저 압력을 정교게 예측할 수 있었다. 기저유동의 정확한 예측을 위해 경계층 두께, 운동량 두께, 표면마찰과 같은 기저 가장자리 유동 물성치를 Dutton 등의 실험과 비교하였다. DES는 하류영역에서의 전단층 말림, 큰 에디 운동, 재순환영역 내의 작은 에디 운동 같은 비정상 난류 운동의 물리적 현상을 잘 모사 하였다. 또한, 경험상수 $C_{DES}$ 1.2를 사용한 현재 결과가 일반적인 경험상수 $C_{DES}$ 0.65에 비해 실험과 잘 일치함을 보여준다.

Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings

  • Xue, Jianyang;Zhou, Chaofeng;Lin, Jianpeng
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.451-464
    • /
    • 2018
  • This paper presents some quasi-static tests for 4 mixed columns composed of CFST column and RC column. The seismic performance and failure mode were studied under low-cyclic revised loading. The failure mode was observed under different axial compression ratios. The hysteretic curve and skeleton curve were obtained. The effects of axial compression ratio on yield mechanism, displacement ductility, energy dissipation, stiffness and strength attenuation were analyzed. The results indicate that the failure behavior of CFST-RC mixed column with archaized style is mainly caused by bending failure and accompanied by some shear failure. The axial compression ratio performs a control function on the yielding order of the upper and lower columns. The yielding mechanism has a great influence on the ductility and energy dissipation capacity of specimens. Based on the experiment, finite element analysis was made to further research the seismic performance by ABAQUS software. The variable parameters were stiffness ratio of upper and lower columns, axial compression ratio, yielding strength of steel tube, concrete strength and rebar ratio. The simulation results show that with the increase of stiffness ratio of the upper and lower columns, the bearing capacity and ductility of specimens can correspondingly increase. As the axial compression ratio increases, the ductility of the specimen decreases gradually. The other three parameters both have positive effect on the bearing capacity but have negative effect on the ductility. The results can provide reference for the design and engineering application of mixed column consisted of CFST-RC in Chinese archaized buildings.

자동차 차체용 TRIP강판의 저항 점용접부 Partial Interfacial Fracture 특성에 관한 연구 (Characterization of Partial Interfacial Fracture on Resistance Spot-Welded TRIP Steels for Automotive Applications)

  • 최철영;김인배;김양도;박영도
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.136-145
    • /
    • 2012
  • Resistance spot welding of TRIP780 steels was investigated to enhance understanding of weld fracture mode after tensile shear testing (TST) and L-shape tensile testing (LTT). The main failure mode for spot welds of TRIP780 steels was partial interfacial fracture (PIF). Although PIF does not satisfy the minimum button diameter (4${\surd}$t) for acceptable welds, it shows enough load carrying capacity of resistance spot welds for advanced high strength steels. In the analysis of displacement controlled L-shape tensile test results, cracks initiated at the notch of the faying surface and propagated through the interface of weldments, and finally, cracks change path into the sheet thickness direction. Use of the ductility ratio and CE analysis suggested that the occurrence of PIF is closely related to high hardness and brittle welds, which are caused by fast cooling rates and high chemical compositions of TRIP steels. Analysis of the hold time and weld time in a welding schedule demonstrated that careful control of the cooling rate and the size of a weld nugget and the HAZ zone can reduce the occurrence of PIF, which leads to sound welds with button fractures (BFs).

An extension of a high order approach for free vibration analysis of the nano-scale sandwich beam with steel skins for two types of soft and stiff cores

  • Marandi, S. Masoud;Dehkordi, Mohsen Botshekanan;Nourbakhsh, S. Hassan
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.261-276
    • /
    • 2019
  • The study investigates the free vibration of a nano-scale sandwich beam by an extended high order approach, which has not been reported in the existing literature. First-order shear deformation theory for steel skins and so-called high-order sandwich panel theory for the core are applied. Next, the modified couple stress theory is used for both skins and cores. The Hamilton principle is utilized for deriving equations and corresponding boundary conditions. First, in the study the three-mode shapes natural frequencies for various material parameters are investigated. Also, obtained results are evaluated for two types of stiff and soft cores and isotropic, homogenous steel skins. In the research since the governing equations and also the boundary conditions are nonhomogeneous, therefore some closed-form solutions are not applicable. So, to obtain natural frequencies, the boundary conditions are converted to initial conditions called the shooting method as the numerical one. This method is one of the most robust approaches to solve complex equations and boundary conditions. Moreover, three types of simply supported on both sides of the beam (S-S), simply on one side and clamp supported on the other one (S-C) and clamped supported on both sides (C-C) are scrutinized. The parametric study is followed to evaluate the effect of nano-size scale, geometrical configurations for skins, core and material property change for cores as well. Results show that natural frequencies increase by an increase in skins thickness and core Young modulus and a decrease in beam length, core thickness as well. Furthermore, differences between obtained frequencies for soft and stiff cores increase in higher mode shapes; while, the more differences are evaluated for the stiff one.

Vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core: Analytical and experiment study

  • Boussoufi, Aicha;Errouane, Lahouaria;Sereir, Zouaoui;Antunes, Jose V.;Debut, Vincent
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.169-193
    • /
    • 2022
  • By the present paper, both experimental and analytical models have been proposed to study the vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core. For a variable mass fraction of Alfa fibers from 5% to 15%, impregnated in a Medapoxy STR resin, this panel were manufactured by molding the orthogonally stiffened core then attached it with both skins. Using simply supported boundary conditions, a free vibration test was carried out using an impact hammer for predicting the natural frequencies, the mode shapes and the damping coefficient versus the fibers content. In addition, an analytical model based on the Higher order Shear Deformation Theory (HSDT) was developed to predict natural frequencies and the mode shapes according to Navier's solution. From the experimental test, we have found that the frequency increases with the increase in the mass fraction of the fibers until 10%. Beyond this fraction, the frequencies give relatively lower values. For the analytical model, variation of the natural frequencies increased considerably with side-to-thickness ratio (a/H) and equivalent thickness of the core to thickness of the face (hs/h). We concluded that, the vibration behavior was significantly influenced by geometrical and mechanical properties of the partially bio-sourced sandwich panel.

다양한 작업 조건을 고려한 LNG 운반선 화물창 2차 방벽의 극저온 접착강도 분석 (Investigation of the Bonding Stress of the 2nd Barrier for LNG Carrier Cargo Containment System Considering Various Working Conditions)

  • 김정현;김희태;황병관;김슬기;김태욱;박두환;이제명
    • 한국산업융합학회 논문집
    • /
    • 제26권3호
    • /
    • pp.499-507
    • /
    • 2023
  • The core of the liquefied natural gas (LNG) carrier cargo containment system (CCS) is to store and transport LNG safely under temperatures below -163 degrees Celsius. The secondary barrier of the LNG CCS is adopted to prevent LNG leakage from CCS to the ship's hull structure. Recently, as the size of the LNG CCS increases, various studies have been conducted on the applied temperature and load ranges. The present study investigates the working condition-dependent bonding strength of the PU15 adhesives of the secondary barrier. In addition, the mechanical performance is analyzed at a cryogenic temperature of -170 degrees Celsius, and the failure surface and failure mode are investigated depending on the working condition of the bonded process. Even though the RSB and FSB-based fracture mode was confirmed, the results showed that all the tested scenarios satisfied the minimum requirement of the regulation.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

절삭 및 적층 가공법으로 제작한 임시 보철물 레진 블록과 재이 장용 자가중합 레진의 전단결합강도 비교 (Comparison of shear bond strength between various temporary prostheses resin blocks fabricated by subtractive and additive manufacturing methods bonded to self-curing reline resin)

  • 류효민;이진한
    • 대한치과보철학회지
    • /
    • 제61권3호
    • /
    • pp.189-197
    • /
    • 2023
  • 목적. 절삭 및 적층 가공 방식으로 제작한 임시 보철물 레진 블록과 재이장용 자가중합레진의 전단결합강도를 비교 평가하고자 하였다. 재료 및 방법. 레진 블록 시편의 제작방식에 따라 4개의 군으로 나누었고 subtractive manufacturing (SM), additive manufacturing stereolithography apparatus (AMS), additive manufacturing digital light processing (AMD), conventional self-curing (CON)의 방식으로 각 20개씩 레진 시편을 제작하였다. 제작 방식에 따른 레진 블록 시편과 재이장용 자가중합레진의 결합을 위해 시편의 표면에 실리콘 몰드를 이용하여 동일한 위치에 재이장 레진을 주입하여 중합하였다. 만능재료시험기를 이용하여 전단결합강도를 측정하였고 주사전자현미경으로 접착 계면의 파절 양상을 확인하였다. 실험군 간 비교를 위해 일원배치 분산분석과 사후 검정으로 Tukey test를 실시하였다(α = .05). 결과. 전단결합강도는 CON, SM, AMS, AMD군 순으로 높았다. CON군은 AMS군, AMD군과 유의한 차이가 있었고(P < .01) SM군과 유의한 차이가 없었다(P > .05). SM군은 AMD군과 유의한 차이가 있었고(P < .01) AMS군과 유의한 차이가 없었다(P > .05). AMS군은 AMD군과 유의한 차이가 있었다(P < .001). 파절 양상은 CON군, AMS군에서 혼합 파절이 높은 빈도로 나타났으며 SM군, AMD군에서 접착 파절이 높은 빈도로 나타났다. 결론. 절삭 및 적층 가공 방식으로 제작한 임시 보철물 레진 블록과 재이장용 자가중합 레진과의 전단결합강도에서 절삭 가공 방식(SM군)은 CON군보다 낮은 결합강도를 보였지만 유의한 차이를 보이지 않았다. 적층 가공 방식(AMS군, AMD군)은 CON군보다 유의하게 낮은 결합강도를 보였으며, AMD군이 가장 낮은 결합강도를 보였고 AMD군은 SM군과도 유의한 차이를 보였다.

앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험 (Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar)

  • 엄태성;황현종;박홍근;이창남;김형섭
    • 한국강구조학회 논문집
    • /
    • 제24권5호
    • /
    • pp.535-547
    • /
    • 2012
  • PSRC 기둥은 앵글을 콘크리트에 매입시킨 기둥으로, 단면의 외곽 코너에 배치되는 앵글이 기둥의 휨-압축에 저항하고, 횡철근은 기둥의 전단과 앵글-콘크리트 사이의 부착에 저항한다. 본 연구에서는 KBC 2009에 따라 PSRC 합성기둥의 휨, 전단, 부착 설계방법을 정립하고, 단순지지된 2/3 스케일의 PSRC 보와 SRC 보의 2점 가력 휨실험을 통하여 제안된 설계법을 검증하고 PSRC 합성기둥의 파괴특성을 분석하였다. 단면의 강재비와 횡철근 간격을 실험 변수로 고려하였다. 실험결과, KBC 2009으로 예측한 PSRC 합성기둥의 휨, 전단, 부착 강도는 실험결과와 잘 일치하였다. 고강도 앵글이 기둥 단면의 외곽에 배치되므로 PSRC 합성기둥은 동일한 강재비를 갖는 일반 SRC 합성기둥 단면에 비하여 매우 우수한 휨저항 성능을 나타냈다. 그러나 앵글과 콘크리트 사이의 부착강도가 충분히 학보되지 못한 경우 합성기둥 단면의 휨항복강도를 발휘하기 이전에 앵글의 부착파괴, 피복콘크리트 파괴, 횡철근의 파단 등이 발생하였다. 또한 앵글 용접성 및 인성이 부족할 경우 앵글-횡철근 용접부에서 앵글의 파단에 의해 실험체가 파괴되었다.