• Title/Summary/Keyword: Shear bond strength (SBS)

Search Result 82, Processing Time 0.024 seconds

Comparison of shear bond strength according to various surface treatment methods of zirconia and resin cement types (지르코니아의 다양한 표면처리 방법과 레진시멘트 종류에 따른 전단결합강도 비교)

  • Bae, Ji-Hyeon;Bae, Gang-Ho;Park, Taeseok;Huh, Jung-Bo;Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.153-163
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of four surface treatment methods to improve zirconia roughness and three types of resin cement on the shear bond strength (SBS). Materials and methods: A total of 120 zirconia blocks were randomly divided into four surface treatments: non-treatment (Control), airborne-particle abrasion (APA) with 50 ㎛ Al2O3 (APA50), APA with 125 ㎛ Al2O3 (APA125), and ZrO2 slurry (ZA). Three resin cements (Panavia F 2.0, Superbond C&B, and Variolink N) were applied to the surface-treated zirconia specimens. All specimens were subjected to SBS testing using a universal testing machine. The surface of the representative specimens of each group was observed by scanning electron microscope (SEM). SBS data were analyzed with oneway ANOVA, two-way ANOVA test and post-hoc Tukey HSD Test (α=.05). Results: In the surface treatment method, APA125, APA50, ZA, and Control showed high shear bond strength in order, but there was no significant difference between APA125 and APA50 (P>.05). Also, ZA showed significantly higher shear bond strength than Control (P<.05). In the resin cement type, Panavia F 2.0, Superbond C&B, and Variolink N showed significantly higher shear bond strength in order (P<.05). In SEM images, the zirconia surfaces of the APA50 and APA125 showed quite rough and irregular shapes, and the zirconia surface of the ZA was observed small irregular porosity and rough surfaces. Conclusion: APA and ZrO2 slurry were enhanced the surface roughness of zirconia, and Panavia F 2.0 containing MDP showed the highest shear bond strength with zirconia.

Pomegranate extract on eroded dentin: antioxidant action, bond strength and morphology of the adhesive interface after aging

  • Thiago Vinicius Cortez;Nathalia Mancioppi Cerqueira;Julia Adornes Gallas;Wanderley Pereira Oliveira;Silmara Aparecida Milori Corona;Aline Evangelista Souza-Gabriel
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.1
    • /
    • pp.9.1-9.14
    • /
    • 2024
  • Objectives: This study aimed to evaluate the effect of pomegranate solution (Punica granatum) on eroded dentin through antioxidant action, shear bond strength (SBS) and interface morphology. Materials and Methods: The 10% pomegranate peel extract was prepared by the lyophilization method. Punicalagin polyphenol was confirmed by high-performance liquid chromatography. Antioxidant activity was evaluated by capturing the 2,2-diphenyl1-picrylhydrazyl (DPPH) radical. For the SBS, 48 dentin fragments were divided into sound or eroded, and subdivided according to the pretreatment (n = 12): water or P. granatum. The surfaces were restored with self-etch adhesive and a bulk-fill resin (Ecosite; DMG). The SBS was done immediately (24 hours) and after thermal cycling + water storage (12 months). For scanning electron microscopy, 48 dentin fragments (24 sound and 24 eroded) received the same treatments as for SBS (n = 6), and they were analyzed after 24 hours and 12 months. Results: The P. granatum had antioxidant action similar (p = 0.246) to the phenolic standard antioxidants. After 24 hours, eroded dentin had lower SBS than sound dentin (p < 0.001), regardless of the pretreatment. After 12 months, P. granatum maintained the SBS of sound dentin (13.46 ± 3.42 MPa) and eroded dentin (10.96 ± 1.90 MPa) statistically similar. The lowest values were found on eroded dentin treated with water (5.75 ± 1.65 MPa) (p < 0.001). P. granatum on eroded dentin caused peritubular demineralization and hybrid layer with resin tags. Conclusions: The pomegranate extract had antioxidant action and preserved the adhesive interface of the eroded dentin.

Effects of demineralizaton-inhibition procedures on the bond strength of brackets bonded to demineralized enamel surface

  • Ekizer, Abdullah;Zorba, Yahya Orcun;Uysal, Tancan;Ayrikcil, Servet
    • The korean journal of orthodontics
    • /
    • v.42 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • Objective: To study and compare the effects of different demineralization-inhibition methods on the shear bond strength (SBS) and fracture mode of an adhesive used to bond orthodontic brackets to demineralized enamel surfaces. Methods: Eighty freshly extracted, human maxillary premolars were divided into 4 equal groups and demineralized over the course of 21 days. Brackets were bonded to the demineralized enamel of teeth in Group 1. In Group 2, bonding was performed following resin infiltration ($ICON^{(R)}$, DMG, Hamburg, Germany). Before bonding, pre-treatment with acidulated phosphate fluoride (APF) or solutions containing casein phosphopeptide-amorphous calcium phosphate with 2% neutral sodium fluoride (CPP-ACP/wF) was performed in Groups 3 and 4, respectively. The SBS values of the brackets were measured and recorded following mechanical shearing of the bracket from the tooth surface. The adhesive remnant index (ARI) scores were determined aft er the brackets failed. Statistical comparisons were performed using one-way ANOVA, Tukey's post-tests, and G-tests. Results: Significant differences were found in some of the intergroup comparisons of the SBS values (F = 39.287, p < 0.001). No significant differences were found between the values for the APF-gel and control groups, whereas significantly higher SBS values were recorded for the resin-infiltrated and CPP-ACP/wF-treated groups. The ARI scores were also significantly different among the 4 groups (p < 0.001). Conclusions: Tooth surfaces exposed to resin infiltration and CPP-ACP/wF application showed higher debonding forces than the untreated, demineralized surfaces.

Comparative study of surface modification on bond strength of polyetherketoneketone adhesively bonded to resins for temporary restoration (Polyetherketoneketone의 표면처리 방법에 따른 임시 보철물 제작용 레진과의 결합 강도 비교 연구)

  • Hong, Mun Gi;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Purpose: The purpose was to compare shear bond strength (SBS) of three types of resin for temporary restoration to polyetherketoneketone (PEKK) depending on surface modification. Materials and Methods: Sixty disks made from PEKK were air-abraded with 110 ㎛ alumina particles (Cobra, Renfert GmbH, Hilzinge, Germany) and thirty specimens were divided into two groups each: PEKK without Visio.link (Bredent, Senden, Germany)(U) and with Visio.link (P). Resins for temporary restoration (polymethylmethacrylate; PMMA, polyethylmethacrylate; PEMA, bis-acryl composite resin) in the shape of a square with one side 3.2 mm were bonded to PEKK twenty respectively and classified into six groups (UM, UE, UC, PM, PE and PC). All specimens were stored in distilled water at 37℃ for 24 hours. SBS of each group was measured at a crosshead speed of 2 mm/min in universal testing machine. SBS was compared using one-way ANOVA and a Tukey HSD test (P = 0.05). Results: Group UM and group UE showed a significant difference in SBS with group UC (P < 0.05). Group PC showed a significant increase in SBS than group UC (P < 0.05). Conclusion: It is recommended to apply Visio.link to PEKK for adhering bis-acrylic composite resin, but not for PMMA and PEMA in clinical practice.

EFFECTS OF DENTIN SURFACE WETNESS OR DESICCATION AFTER ACID ETCHING ON DENTIN BONDING (산부식후 상아질 표면의 습윤 또는 건조가 상아질 결합에 미치는 영향)

  • Yang, Won-Kyung;Kwon, Hyuk-Choon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.243-253
    • /
    • 2000
  • The purpose of this in vitro study was to evaluate dentin bonding by two different dentin bonding systems(DBS) using acetone based primer or adhesive [All Bond 2(AB2), One Step(OS)] when they were applied by wet or dry bonding technique. Morphology of resin-dentin interface and hybrid layer thickness(HLT) were investigated using Confocal Laser Scanning Microscope(CLSM) and compared to shear bond strength(SBS). 72 extracted sound human molars were randomly divided into 4 groups of 18 teeth each - Group 1.(AW); AB2 by wet bonding. Group 2(AD); AB2 by dry bonding. Group 3.(OW); OS by wet bonding, Group 4.(OD); OS by dry bonding. In 6 teeth of each group, notch-shaped class V cavities(depth 2mm) were prepared on buccal and lingual surface at the cementoenamel juction(12 cavities per group). To obtain color contrast in CLSM observation, bonding resins of each DBS were mixed with rhodamine B and primer of AB2 was mixed with sodium fluorescein. Prepared teeth of each group were treated with AB2, OS, respectively according to the manufacturer's instructions except for dentin surface moisture treatment after acid etching. In group 1 and 3, after acid etching, excess water was removed with wet tissue(Kimwipes), leaving consistently shiny, visibly hydrated dentin surface. In group 2 and 4, dentin surface was dried for 10 seconds at 1 inch distance. The treated teeth were then packed with composite resin(${\AE}$litefil) and light-cured. 12 microscopic samples($60{\sim}80{\mu}m$ thickness) of each group were obtained after longitudinal section and grinding(Exakt cutting and grinding system). Morphological investigation of resin-dentin interface and HLT measurement using CLSM were done. For measurement of SBS, remaining 12 teeth of each group were flattened occlusally to remove all enamel and grinded to 500 grit SiC(Pedemet Specimen Preparation Equipment). After applying DBS on the exposed dentin surface, composite resin was applied in the shape of cylinder, which has 5mm diameter, 1.5mm thickness, and light cured. SBS was measured using Instron with a crosshead speed of 0.5mm/min. It was concluded as follows, 1. HLT of AW(mean: $2.59{\mu}m$) was thicker than any other group, and followed by AD, OW, OD in descending order(mean; 2.37, 2.28, $1.92{\mu}m$). Only OD had statistically significant differences(p<0.05) to AW and AD. 2. There were intimate contact of resin and dentin at the interface in wet bonding groups, but gaps or irregular interfaces were observed in dry bonding groups. 3. The length, diameter, density of resin tags were various even in the same group without significant differences between groups and lots of adhesive lateral branches were observed. 4. There were no statistically significant difference of SBS between AB2 and OS, but SBS of wet bonding groups were significantly higher(p<0.05) than dry bonding groups. 5. There were no consistent relationships between HLT and SBS.

  • PDF

Shear bond strength of dental CAD-CAM hybrid restorative materials repaired with composite resin (치과용 복합레진으로 수리된 CAD-CAM hybrid 수복물의 전단결합강도)

  • Moon, Yun-Hee;Lee, Jonghyuk;Lee, Myung-Gu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.193-202
    • /
    • 2016
  • Purpose: This study was performed in order to assess the effect of the surface treatment methods and the use of bonding agent on the shear bond strength (SBS) between the aged CAD-CAM (computer aided design-computer aided manufacturing) hybrid materials and added composite resin. Materials and methods: LAVA Ultimate (LU) and VITA ENAMIC (VE) specimens were age treated by submerging in a $37^{\circ}C$ water bath filled with artificial saliva (Xerova solution) for 30 days. The surface was ground with #220 SiC paper then the specimens were divided into 9 groups according to the combination of the surface treatment (no treatment, grinding, air abrasion with aluminum oxide, HF acid) and bonding agents (no bonding, Adper Single Bond 2, Single Bond Universal). Each group had 10 specimens. Specimens were repaired (added) using composite resin (Filtek Z250), then all the specimens were stored for 7 days in room temperature distilled water. SBS was measured and the fractured surfaces were observed with a scanning electron microscope (SEM). One-way ANOVA and Scheffe test were used for statistical analysis (${\alpha}=.05$). Results: Mostly groups with bonding agent treatment showed higher SBS than groups without bonding agent. Among the groups without bonding agent the groups with aluminum oxide treatment showed higher SBS. However there was no significant difference between groups except two subgroups within LU group, which revealed a significant increase of SBS when Single Bond Universal was used on the ground LU specimen. Conclusion: The use of bonding agent when repairing an aged LAVA Ultimate restoration is recommended.

The effect of continuous application of MDP-containing primer and luting resin cement on bond strength to tribochemical silica-coated Y-TZP

  • Lim, Myung-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.19.1-19.10
    • /
    • 2018
  • Objectives: This study investigated the effect of continuous application of 10-methacryloyloxydecyldihydrogen phosphate (MDP)-containing primer and luting resin cement on bond strength to tribochemical silica-coated yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Materials and Methods: Forty bovine teeth and Y-TZP specimens were prepared. The dentin specimens were embedded in molds, with one side of the dentin exposed for cementation with the zirconia specimen. The Y-TZP specimen was prepared in the form of a cylinder with a diameter of 3 mm and a height of 10 mm. The bonding surface of the Y-TZP specimen was sandblasted with silica-coated aluminium oxide particles. The forty tribochemical silica-coated Y-TZP specimens were cemented to the bovine dentin (4 groups; n = 10) with either an MDP-free primer or an MDP-containing primer and either an MDP-free resin cement or an MDP-containing resin cement. After a shear bond strength (SBS) test, the data were analyzed using 1-way analysis of variance and the Tukey test (${\alpha}=0.05$). Results: The group with MDP-free primer and resin cement showed significantly lower SBS values than the MDP-containing groups (p < 0.05). Among the MDP-containing groups, the group with MDP-containing primer and resin cement showed significantly higher SBS values than the other groups (p < 0.05). Conclusions: The combination of MDP-containing primer and luting cement following tribochemical silica coating to Y-TZP was the best choice among the alternatives tested in this study.

The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin

  • Su, Naichuan;Yue, Li;Liao, Yunmao;Liu, Wenjia;Zhang, Hai;Li, Xin;Wang, Hang;Shen, Jiefei
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.214-223
    • /
    • 2015
  • PURPOSE. To measure the surface loss of dental restorative zirconia and the short-term bond strength between an indirect composite resin (ICR) and zirconia ceramic after various sandblasting processes. MATERIALS AND METHODS. Three hundred zirconia bars were randomly divided into 25 groups according to the type of sandblasting performed with pressures of 0.1, 0.2, 0.4 and 0.6 MPa, sandblasting times of 7, 14 and 21 seconds, and alumina powder sizes of 50 and $110{\mu}m$. The control group did not receive sandblasting. The volume loss and height loss on zirconia surface after sandblasting and the shear bond strength (SBS) between the sandblasted zirconia and ICR after 24-h immersion were measured for each group using multivariate analysis of variance (ANOVA) and Least Significance Difference (LSD) test (${\alpha}$=.05). After sandblasting, the failure modes of the ICR/zirconia surfaces were observed using scanning electron microscopy. RESULTS. The volume loss and height loss were increased with higher sandblasting pressure and longer sandblasting treatment, but they decreased with larger powder size. SBS was significantly increased by increasing the sandblasting time from 7 seconds to 14 seconds and from 14 seconds to 21 seconds, as well as increasing the size of alumina powder from $50{\mu}m$ to $110{\mu}m$. SBS was significantly increased from 0.1 MPa to 0.2 MPa according to the size of alumina powder. However, the SBSs were not significantly different with the sandblasting pressure of 0.2, 0.4 and 0.6 MPa. The possibilities of the combination of both adhesive failure and cohesive failure within the ICR were higher with the increases in bonding strength. CONCLUSION. Based on the findings of this study, sandblasting with alumina particles at 0.2 MPa, 21 seconds and the powder size of $110{\mu}m$ is recommended for dental applications to improve the bonding between zirconia core and ICR.

THE EFFECTS OF MECHANICAL AND THERMAL FATIGUE ON THE SHEAR BOND STRENGTH OF ORTHODONTIC ADHESIVES (기계적 및 열적 피로가 교정용 접착제의 결합강도에 미치는 영향)

  • Shin, Wan-Cheal;Kim, Jong-sung;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.26 no.2 s.55
    • /
    • pp.175-186
    • /
    • 1996
  • The purpose of this study was to examine the effects of mechanical and thermal fatigue on the shear bond strength(SBS) of stainless steel mesh brackets bonded to human premolar teeth with 3 no-mix adhesives. The stainless steel mesh bracket was Ormesh(Ormco, .022 slot) and three types of no-mix adhesives were Ortho-one(Bisco), $Monolok^2$(RMO), $System\;1^+$(Ormco). The $10^6$ loadcycles of $17.4{\times}10^2sin2{\pi}ftlg{\cdot}cm$ and the 1,000 thermocycles of 15 second dwell time in each bath of $5^{\circ}C\;and\;55^{\circ}C$ were acturated as mechanical and thermal fatigue stress, and SBS were measured after each fatigue test. The fracture sites were analyzed by stereoscope and scanning electron microscope. The results obtained were summarized as follows; 1. Before thermocycles, $Monolok^2$ showed the highest Knoop hardness number(KHN, $64.03kg/mm^2$) and $System\;1^+$ showed the lowest value($31.60kg/mm^2$). After thermocycling, $Monolok^2$ also showed the highest KHN($38.03kg/mm^2$) and $system\;1^+$ showed the minimum($20.87kg/mm^2$). The KHN of Ortho-one, $Monolok^2,\;System\;1^+$ significantly decreased after thermocycling (P<0.01). 2. In static shear bond test, three adhesives had no significant differences in the SBS(P>0.01). 3. After thermocycling test, $Monolok^2$ showed the maximum SBS($19.34{\pm}2.75MPa$) and Ortho-one showed the minimum SBS($13.66{\pm}2.23MPa$). The SBS of Ortho-one(P<0.01) and $System\;1^+$(P<0.05) significantly decreased after $10^3$ thermocycles. 4. The SBS of three adhesives after $10^6$ loadcycles were similar and were not significantly decreased compared with static group(P>0.01). 5. The failure sites were usually bracket/resin interface in all groups irrespective of experimental conditions.

  • PDF

Effect of thermocycling on shear bond strength and mode of failure of ceramic orthodontic brackets bonded to different porcelain restorations (수 종의 도재 수복물에 부착된 세라믹 브라켓의 전단접착강도와 파절양상에 열순환이 미치는 영향)

  • Kang, Sang-Wook;Son, Woo-Sung;Park, Soo-Byung;Kim, Seong-Sik
    • The korean journal of orthodontics
    • /
    • v.39 no.4
    • /
    • pp.225-233
    • /
    • 2009
  • Objective: The purpose of this study was to investigate the effect of thermocycling and type of porcelain restoration on shear bond strength (SBS) and mode of failure of monocrystalline ceramic brackets. Methods: A total of 60 porcelain discs were made and divided into three equal groups as follows: Ceramco 3, IPS Empress II, Zi-ceram/Vintage ZR. ceramic brackets were bonded to the prepared porcelain surfaces in the same manner. Each group was divided randomly into two subgroups: thermocycled group and non-thermocycled group (control). All samples were tested in shear mode on an universal testing machine. Results: SBS of the non-thermocycled group was clinically acceptable (Ceramco 3: $7.06\;{\pm}\;1.76\;MPa$, IPS Empress II: $7.55\;{\pm}\;2.38\;MPa$, Zi-ceram/Vintage ZR: $7.19\;{\pm}\;1.38\;MPa$). But, SBS of the thermocycled group was significantly reduced (Ceramco 3: $4.88\;{\pm}\;1.00\;MPa$, IPS Empress II: $5.46\;{\pm}\;1.35\;MPa$, Zi-ceram/Vintage ZR: $4.84\;{\pm}\;1.01\;MPa$, p < 0.05). There was no difference between the shear bond strength by type of porcelain restoration. All bonding failure occurred between bracket base and adhesive, except for 2 samples. Conclusions: The results of this study suggest that the type of porcelain restoration did not affect SBS, but thermocycling weakened SBS. Therefore, the effect of thermocycling should be considered when using ceramic brackets in practice.