DOI QR코드

DOI QR Code

The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin

  • Su, Naichuan (State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University) ;
  • Yue, Li (Department of Dental Technology, West China Hospital of Stomatology, Sichuan University) ;
  • Liao, Yunmao (State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University) ;
  • Liu, Wenjia (State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University) ;
  • Zhang, Hai (Department of Restorative Dentistry, School of Dentistry, University of Washington) ;
  • Li, Xin (Department of Stomatology, Mianyang Central Hospital) ;
  • Wang, Hang (State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University) ;
  • Shen, Jiefei (State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University)
  • Received : 2014.11.18
  • Accepted : 2015.05.11
  • Published : 2015.06.30

Abstract

PURPOSE. To measure the surface loss of dental restorative zirconia and the short-term bond strength between an indirect composite resin (ICR) and zirconia ceramic after various sandblasting processes. MATERIALS AND METHODS. Three hundred zirconia bars were randomly divided into 25 groups according to the type of sandblasting performed with pressures of 0.1, 0.2, 0.4 and 0.6 MPa, sandblasting times of 7, 14 and 21 seconds, and alumina powder sizes of 50 and $110{\mu}m$. The control group did not receive sandblasting. The volume loss and height loss on zirconia surface after sandblasting and the shear bond strength (SBS) between the sandblasted zirconia and ICR after 24-h immersion were measured for each group using multivariate analysis of variance (ANOVA) and Least Significance Difference (LSD) test (${\alpha}$=.05). After sandblasting, the failure modes of the ICR/zirconia surfaces were observed using scanning electron microscopy. RESULTS. The volume loss and height loss were increased with higher sandblasting pressure and longer sandblasting treatment, but they decreased with larger powder size. SBS was significantly increased by increasing the sandblasting time from 7 seconds to 14 seconds and from 14 seconds to 21 seconds, as well as increasing the size of alumina powder from $50{\mu}m$ to $110{\mu}m$. SBS was significantly increased from 0.1 MPa to 0.2 MPa according to the size of alumina powder. However, the SBSs were not significantly different with the sandblasting pressure of 0.2, 0.4 and 0.6 MPa. The possibilities of the combination of both adhesive failure and cohesive failure within the ICR were higher with the increases in bonding strength. CONCLUSION. Based on the findings of this study, sandblasting with alumina particles at 0.2 MPa, 21 seconds and the powder size of $110{\mu}m$ is recommended for dental applications to improve the bonding between zirconia core and ICR.

Keywords

References

  1. Dong JK, Luthy H, Wohlwend A, Scharer P. Heat-pressed ceramics: technology and strength. Int J Prosthodont 1992;5:9-16.
  2. Luangruangrong P, Cook NB, Sabrah AH, Hara AT, Bottino MC. Influence of full-contour zirconia surface roughness on wear of glass-ceramics. J Prosthodont 2014;23:198-205. https://doi.org/10.1111/jopr.12088
  3. Choi JE, Waddell JN, Torr B, Swain MV. Pressed ceramics onto zirconia. Part 1: Comparison of crystalline phases present, adhesion to a zirconia system and flexural strength. Dent Mater 2011;27:1204-12. https://doi.org/10.1016/j.dental.2011.08.006
  4. Lawn BR, Pajares A, Zhang Y, Deng Y, Polack MA, Lloyd IK, Rekow ED, Thompson VP. Materials design in the performance of all-ceramic crowns. Biomaterials 2004;25:2885-92. https://doi.org/10.1016/j.biomaterials.2003.09.050
  5. Lawna BR, Denga Y, Miranda P, Pajares A, Chai H, Kim DK. Overview: Damage in brittle layer structures from concentrated loads. J Mater Res 2002;17:3019-36. https://doi.org/10.1557/JMR.2002.0440
  6. Sailer I, Feher A, Filser F, Luthy H, Gauckler LJ, Scharer P, Franz Hammerle CH. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int 2006;37:685-93.
  7. Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007;20:383-8.
  8. Scurria MS, Bader JD, Shugars DA. Meta-analysis of fixed partial denture survival: prostheses and abutments. J Prosthet Dent 1998;79:459-64. https://doi.org/10.1016/S0022-3913(98)70162-3
  9. Kim BK, Bae HE, Shim JS, Lee KW. The influence of ceramic surface treatments on the tensile bond strength of composite resin to all-ceramic coping materials. J Prosthet Dent 2005;94:357-62. https://doi.org/10.1016/j.prosdent.2005.08.012
  10. Taira Y, Hatono H, Tokita M, Sawase T. Thickness and surface structure of a ceramic layer created on three indirect resin composites with aerosol deposition. J Prosthodont Res 2010;54:168-72. https://doi.org/10.1016/j.jpor.2010.03.005
  11. Kirmali O, Barutcugil C, Harorli O, Kapdan A, Er K. Resin cement to indirect composite resin bonding: Effect of various surface treatments. Scanning 2015;37:89-94. https://doi.org/10.1002/sca.21183
  12. Leinfelder KF. Indirect posterior composite resins. Compend Contin Educ Dent 2005;26:495-503.
  13. Takahashi Y, Hisama K, Sato H, Chai J, Shimizu H, Kido H, Ukon S. Probability of failure of highly filled indirect resinveneered implant-supported restorations: an in vitro study. Int J Prosthodont 2002;15:179-82.
  14. Nandini S. Indirect resin composites. J Conserv Dent 2010;13:184-94. https://doi.org/10.4103/0972-0707.73377
  15. Ereifej N, Silikas N, Watts DC. Edge strength of indirect restorative materials. J Dent 2009;37:799-806. https://doi.org/10.1016/j.jdent.2009.06.009
  16. Tsitrou EA, Northeast SE, van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent 2007;35:897-902. https://doi.org/10.1016/j.jdent.2007.07.002
  17. Ciftci Y, Canay S. The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations. Int J Oral Maxillofac Implants 2000;15:571-82.
  18. Kobayashi K, Komine F, Blatz MB, Saito A, Koizumi H, Matsumura H. Influence of priming agents on the shortterm bond strength of an indirect composite veneering material to zirconium dioxide ceramic. Quintessence Int 2009;40:545-51.
  19. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent 2003;89:268-74. https://doi.org/10.1067/mpr.2003.50
  20. Guazzato M, Albakry M, Quach L, Swain MV. Influence of surface and heat treatments on the flexural strength of a glass-infiltrated alumina/zirconia-reinforced dental ceramic. Dent Mater 2005;21:454-63. https://doi.org/10.1016/j.dental.2004.07.010
  21. Wang G, Zhang S, Bian C, Kong H. Effect of zirconia surface treatment on zirconia/veneer interfacial toughness evaluated by fracture mechanics method. J Dent 2014;42:808-15. https://doi.org/10.1016/j.jdent.2014.04.005
  22. Liu D, Matinlinna JP, Tsoi JK, Pow EH, Miyazaki T, Shibata Y, Kan CW. A new modified laser pretreatment for porcelain zirconia bonding. Dent Mater 2013;29:559-65. https://doi.org/10.1016/j.dental.2013.03.002
  23. Karakoca S, Yilmaz H. Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics. J Biomed Mater Res B Appl Biomater 2009;91:930-7.
  24. Zhang Y, Lawn BR, Rekow ED, Thompson VP. Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res B Appl Biomater 2004;71:381-6.
  25. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005;21:984-91. https://doi.org/10.1016/j.dental.2005.03.013
  26. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered allceramic restorations. Part 3: double veneer technique. J Prosthodont 2008;17:9-13.
  27. Kern M, Thompson VP. Sandblasting and silica-coating of dental alloys: volume loss, morphology and changes in the surface composition. Dent Mater 1993;9:151-61. https://doi.org/10.1016/0109-5641(93)90112-4
  28. Kern M, Thompson VP. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition. J Prosthet Dent 1994;71:453-61. https://doi.org/10.1016/0022-3913(94)90182-1
  29. Boccaccini AR, Winkler V. Fracture surface roughness and toughness of Al2O3-platelet reinforced glass matrix composites. Compos Part A 2002;33:125-31.
  30. Saka M, Yuzugullu B. Bond strength of veneer ceramic and zirconia cores with different surface modifications after microwave sintering. J Adv Prosthodont 2013;5:485-93. https://doi.org/10.4047/jap.2013.5.4.485
  31. Kosmac T, Oblak C, Marion L. The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. J European Ceram Soc 2008;28:1085-90. https://doi.org/10.1016/j.jeurceramsoc.2007.09.013
  32. Zhang Y, Lawn BR, Malament KA, Van Thompson P, Rekow ED. Damage accumulation and fatigue life of particle-abraded ceramics. Int J Prosthodont 2006;19:442-8.
  33. Ford C, Qasim T, Bush MB, Hu X, Shah MM, Saxena VP, Lawn BR. Margin failures in crown-like brittle structures: offaxis loading. J Biomed Mater Res B Appl Biomater 2008;85:23-8.
  34. Fischer H, Weber M, Marx R. Lifetime prediction of all-ceramic bridges by computational methods. J Dent Res 2003;82:238-42. https://doi.org/10.1177/154405910308200317
  35. de Oyague RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R. Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic. Dent Mater 2009;25:172-9. https://doi.org/10.1016/j.dental.2008.05.012
  36. Wolf DM, Powers JM, O'Keefe KL. Bond strength of composite to porcelain treated with new porcelain repair agents. Dent Mater 1992;8:158-61. https://doi.org/10.1016/0109-5641(92)90074-M
  37. Quaas AC, Yang B, Kern M. Panavia F 2.0 bonding to contaminated zirconia ceramic after different cleaning procedures. Dent Mater 2007;23:506-12. https://doi.org/10.1016/j.dental.2006.03.008
  38. Komine F, Fushiki R, Koizuka M, Taguchi K, Kamio S, Matsumura H. Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework. J Oral Sci 2012;54:39-46. https://doi.org/10.2334/josnusd.54.39
  39. Kern M, Barloi A, Yang B. Surface conditioning influences zirconia ceramic bonding. J Dent Res 2009;88:817-22. https://doi.org/10.1177/0022034509340881
  40. Watanabe T, Ino S, Okada S, Katsumata Y, Hamano N, Hojo S, Teranaka T, Toyodo M. Influence of simplified silica coating method on the bonding strength of resin cement to dental alloy. Dent Mater J 2008;27:16-20. https://doi.org/10.4012/dmj.27.16
  41. Ban S. Reliability and properties of core materials for all-ceramic dental restorations. Japanese Dent Sci Rev 2008;44:3-21. https://doi.org/10.1016/j.jdsr.2008.04.001
  42. Li T, Zhang ZF, Zhou M, Wang H. Research progress on sandblasting technique in the dental ceramic restorations. Int J Stomatol 2010;37:206-9.
  43. Craig RG, Powers JM, Wataha JC. Dental materials: properties and manuplation. 8th ed. St. Louis; Mosby; 2004. p. 578-80.
  44. Matsumura H, Yanagida H, Tanoue N, Atsuta M, Shimoe S. Shear bond strength of resin composite veneering material to gold alloy with varying metal surface preparations. J Prosthet Dent 2001;86:315-9. https://doi.org/10.1067/mpr.2001.114823
  45. Ozkurt Z, Kazazoglu E, Unal A. In vitro evaluation of shear bond strength of veneering ceramics to zirconia. Dent Mater J 2010;29:138-46. https://doi.org/10.4012/dmj.2009-065
  46. Uo M, Sjogren G, Sundh A, Goto M, Watari F, Bergman M. Effect of surface condition of dental zirconia ceramic (Denzir) on bonding. Dent Mater J 2006;25:626-31. https://doi.org/10.4012/dmj.25.626
  47. Kosmac T, Oblak C, Marion L. The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. J Eur Ceram Soc 2008;28:1085-90. https://doi.org/10.1016/j.jeurceramsoc.2007.09.013
  48. Nakamura T, Wakabayashi K, Zaima C, Nishida H, Kinuta S, Yatani H. Tensile bond strength between tooth-colored porcelain and sandblasted zirconia framework. J Prosthodont Res 2009;53:116-9. https://doi.org/10.1016/j.jpor.2009.02.007
  49. Fischer J, Stawarczyk B, Tomic M, Strub JR, Hammerle CH. Effect of thermal misfit between different veneering ceramics and zirconia frameworks on in vitro fracture load of single crowns. Dent Mater J 2007;26:766-72. https://doi.org/10.4012/dmj.26.766

Cited by

  1. Shear bond strength of indirect composite material to monolithic zirconia vol.8, pp.4, 2016, https://doi.org/10.4047/jap.2016.8.4.267
  2. Positron Annihilation and Complementary Studies of Copper Sandblasted with Alumina Particles at Different Pressures vol.10, pp.12, 2017, https://doi.org/10.3390/ma10121343
  3. Effect of experimental primers on hydrolytic stability of resin zirconia bonding vol.31, pp.10, 2017, https://doi.org/10.1080/01694243.2016.1244038
  4. Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces vol.32, pp.4, 2017, https://doi.org/10.1007/s10103-017-2171-4
  5. Positron Annihilation and Complementary Studies of Stainless Steel Exposed to Sandblasting at Different Angles vol.65, pp.1, 2017, https://doi.org/10.1007/s11249-017-0813-0
  6. Influence of the Conditioning Method for Pre-Sintered Zirconia on the Shear Bond Strength of Bilayered Porcelain/Zirconia vol.9, pp.9, 2016, https://doi.org/10.3390/ma9090765
  7. Influence of different surface treatments on zirconia/resin shear bond strength using one-bottle universal adhesive pp.1743-6761, 2018, https://doi.org/10.1080/17436753.2018.1507427
  8. The effect of zirconia surface architecturing technique on the zirconia/veneer interfacial bond strength vol.10, pp.4, 2018, https://doi.org/10.4047/jap.2018.10.4.259
  9. Nonthermal plasma on the shear bond strength of relining resin to thermoplastic denture base resin vol.56, pp.3, 2018, https://doi.org/10.4047/jkap.2018.56.3.199
  10. The effect of sandblasting duration on the bond durability of dual-cure adhesive cement to CAD/CAM resin restoratives vol.10, pp.3, 2018, https://doi.org/10.4047/jap.2018.10.3.211
  11. Selective cell response on natural polymer bio-interfaces textured by femtosecond laser vol.124, pp.2, 2018, https://doi.org/10.1007/s00339-018-1628-z
  12. Effect of airborne particle abrasion and sintering order on the surface roughness and shear bond strength between Y-TZP ceramic and resin cement vol.38, pp.2, 2019, https://doi.org/10.4012/dmj.2018-051
  13. Surface wettability and nano roughness at different grit blasting operational pressures and their effects on resin cement to zirconia adhesion vol.38, pp.3, 2019, https://doi.org/10.4012/dmj.2018-137
  14. Shear Bond Strength Between Zirconia and Veneer Ceramic: Effect of Thermocycling and Laser Treatment vol.37, pp.7, 2015, https://doi.org/10.1089/photob.2018.4541
  15. Influence of various airborne-particle abrasion conditions on bonding between zirconia ceramics and an indirect composite resin material vol.122, pp.5, 2015, https://doi.org/10.1016/j.prosdent.2019.08.016
  16. Effect of surface conditioning methods on the microtensile bond strength of repair composite to indirect restorative materials vol.33, pp.21, 2015, https://doi.org/10.1080/01694243.2019.1640173
  17. Effect of core materials for core fabrication for dental implants on in-vitro cytocompatibility of MC3T3-E1 cells vol.19, pp.1, 2015, https://doi.org/10.1186/s12903-019-0985-0
  18. Effect of surface treatments on repair strength, roughness and morphology in aged metal-free crowns vol.19, pp.None, 2015, https://doi.org/10.20396/bjos.v19i0.8656155
  19. Evaluation of surface properties and shear bond strength of zirconia substructure after sandblasting and acid etching vol.7, pp.9, 2015, https://doi.org/10.1088/2053-1591/abb5c9
  20. Micro-Shear Bond Strength of Indirect Composite Resin to Three Different Computer-Milled Cores After Thermocycling vol.32, pp.3, 2020, https://doi.org/10.30699/jidai.32.3.4.67
  21. Evaluation of zirconia and zirconia‐reinforced glass ceramic systems fabricated for minimal invasive preparations using a novel standardization method vol.32, pp.6, 2020, https://doi.org/10.1111/jerd.12570
  22. Influence of Low-Pressure Plasma on the Surface Properties of CAD-CAM Leucite-Reinforced Feldspar and Resin Matrix Ceramics vol.10, pp.24, 2015, https://doi.org/10.3390/app10248856
  23. Comparative evaluation of shear bond strength between titanium-ceramic and cobalt-chromium-ceramic: An in vitro study vol.21, pp.3, 2021, https://doi.org/10.4103/jips.jips_81_21
  24. Effect of Al 2 O 3 Sandblasting Particle Size on the Surface Topography and Residual Compressive Stresses of Three Different Dental Zirconia Grades vol.14, pp.3, 2015, https://doi.org/10.3390/ma14030610
  25. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review vol.13, pp.23, 2015, https://doi.org/10.3390/polym13234234