• Title/Summary/Keyword: Shear band

Search Result 184, Processing Time 0.028 seconds

Strain Gradient Crystal Plasticity Finite Element Modeling for the Compression Behaviors of Single Crystals (단결정 압축 변형 거동의 변형구배 결정소성 유한요소해석)

  • Jung, Jae-Ho;Cho, Kyung-Mox;Choi, Yoon Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.679-687
    • /
    • 2017
  • A strain-gradient crystal plasticity finite element method(SGCP-FEM) was utilized to simulate the compressive deformation behaviors of single-slip, (111)[$10{\bar{1}}$], oriented FCC single-crystal micro-pillars with two different slip-plane inclination angles, $36.3^{\circ}$ and $48.7^{\circ}$, and the simulation results were compared with those from conventional crystal plasticity finite element method(CP-FEM) simulations. For the low slip-plane inclination angle, a macroscopic diagonal shear band formed along the primary slip direction in both the CP- and SGCP-FEM simulations. However, this shear deformation was limited in the SGCP-FEM, mainly due to the increased slip resistance caused by local strain gradients, which also resulted in strain hardening in the simulated flow curves. The development of a secondly active slip system was altered in the SGCP-FEM, compared to the CP-FEM, for the low slip-plane inclination angle. The shear deformation controlled by the SGCP-FEM reduced the overall crystal rotation of the micro-pillar and limited the evolution of the primary slip system, even at 10 % compression.

Dispersion of Rayleigh Waves in the Korean Peninsula

  • Cho, Kwang-Hyun;Lee, Kie-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.231-240
    • /
    • 2006
  • The crustal structure of the Korean Peninsula was investigated by analyzing phase velocity dispersion data of Rayleigh waves. Earthquakes recorded by three component broad-band velocity seismographs during 1999-2004 in South Korea were used in this study. The fundamental mode Rayleigh waves were extracted from vertical components of seismograms by multiple filter technique and phase match filter method. Phase velocity dispersion curves of the fundamental mode signal pairs for 14 surface wave propagation paths on the great circle in the range 10 to 80 sec were computed by two-station method. Treating the shear velocity of each layer as an independent parameter, phase velocity data of Rayleigh wave were inverted. All the result models can be explained by a rather homogeneous crust of shear-wave velocity increasing from 2.8 to 3.25 km/sec from top to about 33 km depth without any distinctive crustal discontinuities and an uppermost mantle of shear-wave velocity between 4.55 and 4.67 km/sec. Our results turn out to agree well with recent study of Cho et al. (2006 b) based on the analysis of seismic background noises to recover short-period (0.5-20 sec) Rayleigh- and Love-wave group velocity dispersion characteristics.

  • PDF

The Frequence Band on the Pizoelectric Characteristic of the Piezoelectric Ceramic Filter (압전 세라믹 필터의 압전 특성에 의한 대역폭 의존성에 관한 연구)

  • Lee, S.H.;Seok, J.Y.;Ha, S.J.;Ryu, G.H.;Kim, H.G.;Yoo, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.613-617
    • /
    • 2002
  • The ceramic filters were developed using technology similar to that of quartz crystal and electromechanical filter. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emhpasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations. Nakazawa developed a double-mode resonator as two acoustically coupled single resonators. And he developed 10.7MHz crystal filters using multi-energy trapping mode of thickness shear vibration. He succeeded in realizing a two-pole band pass filter response without external inductance by splitting a dot electrode to creat coupled symmetric and antisymmetric vibration modes. Accordingly, the simulation for ceramic filter were important. So that, this paper were investigated the pass frequency of filter on the electrode length and thickness of ceramic.

  • PDF

Investigation of Goyang Tornado Outbreak Using X-band Polarimetric Radar: 10 June 2014 (X밴드 이중편파레이더를 활용한 고양 토네이도 발생 사례 분석: 2014년 6월 10일)

  • Jeong, Jong-Hoon;Kim, Yeon-Hee;Oh, Su-Bin;Lim, Eunha;Joo, Sangwon
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.47-58
    • /
    • 2016
  • On 10 July 2014, tornado outbreak occurred over Goyang province in Korea. This was the first supercell tornado ever reported or documented in Korea. The characteristics of the supercell tornado were investigated using an X-band polarimetric radar, surface meteorological observation, wind profiler, and operational numerical weather prediction (Regional Data Assimilation and Prediction System, RDAPS). The supercell tornado developed along a preexisting dryline that was contributed to surface wind shear. The radar analyses examined here show that the supercell tornado indicated a hook echo with mesocyclone. The decending reflectivity core as well was detected before tornadogenesis and prior to intensification of supercell. The supercell tornado exhibited characteristics similar to typical supercell tornado over the Great Plains of the United States, such as hook echo, bounded weak echo region, and slower movement speed relative to the mean wind. Compared to the typical supercell tornado over U.S., this tornado showed horizontal scale of the mesocyclone was relatively smaller and left-mover.

Effect of Electrical Stimulation and Delayed Chilling on the Physicochemical Characteristics of Hanwoo Beef (한우 도체에 대한 전기자극 및 지연냉각이 쇠고기의 이화학적 특성에 미치는 영향)

  • 김대곤;안동현;김수민;성삼경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.2
    • /
    • pp.207-213
    • /
    • 1998
  • These experiments were carried out to investigate the effects of electrical stimulation(ES) and delayed chilling (DC) on the quality characteristics of Hanwoo beef. The left half carcass was treated with ES(550V, 90sec)within postmortem 30min. The electrical stimulated half carcass was subjected to chilling at 16$^{\circ}C$ for 24hr, and then stored at 2$\pm$2$^{\circ}C$ for 15days (ESDC). The right half carcass was stored at 2$\pm$2$^{\circ}C$ for 15 days (NES). ESDC showed a rapid pH fall and tended to reach to pH5.54 at postmortem 2 hrs. But, there was no consistent effect of electrical stimulation and delayed chilling on meat color, cooking loss and water holding capacity. Myofibril fragmentation index was higher than that of NES during storage. ESDC showed lower shear force value and strength consistently than NES. SDS-PAGE band patterns of myofibrils showed the rapid breakdown of troponin T and troponin I band in ESDC, compared with NES, and revealed the specific band below myosin light chain-2 pattern in ESDC.

  • PDF

Rheological and mechanical properties of ABS/PC blends

  • Khan M.M.K.;Liang R.F.;Gupta R.K.;Agarwal S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Acrylonitrile-Butadiene-Styrene (ABS), polycarbonate (PC) and their alloys are an important class of engineering thermoplastics that are widely used for automotive industry, computer and equipment housings. For the process of recycling mixtures of ABS and PC, it is desirable to know how sensitive the blend properties are to changes in compositions. It was for this reason that blends of virgin ABS and virgin PC at five different compositions, namely, $15\%,\;30\%,\;50\%,\;70%$ and $85\%$ by weight of ABS were prepared and characterised by rheological and mechanical measurements. Rheological properties of these blends in steady, oscillatory and transient step shear and mechanical properties, namely, tensile strength, elongation-at-break and Izod impact strength are reported. The results show that PC behaves in a relatively Newtonian manner, but ABS exhibits significant shear thinning. The ABS-rich blends show a trend that is similar to that of ABS, while PC-rich blends, namely $0\%$ and $15\%$, exhibit a nearly Newtonian behaviour. However, at a fixed shear rate or frequency, the steady shear or the dynamic viscosity varied respectively in a non-mono-tonic manner with composition. Except for $15\%$ blend, the viscosities of other blends fall into a narrow band indicating a wide-operation window of varying blend ratio. The blends exhibited a lower viscosity than either of the two pure components. The other noticeable feature was that the blends at $70\%$ and $85\%$ ABS content had a higher G' than pure ABS, indicating an enhancement of elastic effect. The tensile yield strength of the blends followed the 'rule of mixtures' showing a decreasing value with the increase of ABS content in PC. However, the elongation-at-break and the impact strength did not appear to obey this 'rule of mixtures,' which suggests that morphology of the blends also plays a significant role in determining the properties. Indeed, scanning electron micrographs of the fracture surfaces of the different blends validate this hypothesis, and the $15\%$ blend is seen to have the most distinct morphology and correspondingly different behaviour and properties.

Isogeometric Optimal Design of Kelvin Lattice Structures for Extremal Band Gaps (극대화된 밴드갭을 갖는 켈빈 격자 구조의 아이소-지오메트릭 최적 설계)

  • Choi, Myung-Jin;Oh, Myung-Hoon;Cho, Seonho;Koo, Bonyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.241-247
    • /
    • 2019
  • A band gap refers to a certain frequency range where the propagation of mechanical waves is prohibited. This work focuses on engineering three-dimensional Kelvin lattices having external band gaps at low audible frequency ranges using a gradient-based design optimization method. Elastic wave propagation in an infinite periodic lattice is investigated by employing the Bloch theorem. We model the ligaments using a shear-deformable beam model obtained by consistent linearization in a geometrically exact beam theory. For a given lattice topology, we enlarge band gap sizes by controlling the configuration of the beam neutral axis and cross-section thickness that are smoothly parameterized by B-spline basis functions within the isogeometric analysis framework.

Shear band Formation in an Elasto-Plastic Orthotropic Material Under Plane Stress Deformation (평면 응력상태에서 이등방성탄-소성 재료의 전단띠 형성)

  • 임세영
    • The Korean Journal of Rheology
    • /
    • v.7 no.2
    • /
    • pp.128-138
    • /
    • 1995
  • 본 논문에서는 전단띠형성에 있어서 전단변형의 집중화 현상을 이방성 탄소성 재료 에 대해서 해석하였고 소성스핀과 비등방성이 전단띠 형성에 미치는 영향을 연구하였다. 평 면응력 상태에서 소성스핀을 갖고있는 이방성 탄-소성 재료에 대해서 재료 분랑ㄴ정 해서 을 수행하여 변형률 집중화의 시작에 미치는 소성스핀과 비등방성의 효과를 연구하였다. 해 석 결과 이방성 재료에서의 전단띠 형성은 압축 또는 인장의 하중 형태나 이방성 축의 초기 각도 그리고 소성스핀의크기에 따라 그 시작이 촉진되거나 지연되었고 전단띠 생성의 방향 도 달라졌다.

  • PDF

Restrained Effect of End Plate on Plane Strain Test Evaluated by Digital Image Correlation Method (디지털 이미지 코릴레이션 기법으로 평가한 평면변형률 시험의 단부 구속 효과)

  • Jang, Eui-Ryong;Choo, Yoon-Sik;Lee, Won-Taeg;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.25-36
    • /
    • 2008
  • The plane strain test can reproduce the real field condition and failure behavior precisely over other laboratory shear tests. Accordingly, this test has been utilized to investigate the shearing behaviors associated with overall failure behavior and local deformation of soils. However, most plane strain tests have been carried out with restrained end plates due to difficulties in manufacturing the equipment and also performing it. This restraint induces different results with real field because of shear stress on end plates. In this study, plane strain tests with/without bottom plate restraint were performed on Jumunjin-sand. The measurement of overall and local deformation was accomplished by digital image correlation technique as well as external LVDT. By applying digital image correlation method using two consecutive images captured through the transparent wall, local deformation behavior of various parts inside the specimen was estimated. And the formation and development of shear band caused by the restrained effect of end plate and the deformation mechanism of sand under plane strain condition were examined.

The Effects of Volume Ratio and Shape on the Formation of Adiabatic Shear Band in WHA (텅스텐 중합금의 부피분율, 입자형상에 따른 단열전단밴드 형성 연구)

  • 이승우;송흥섭;문갑태
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.682-690
    • /
    • 2002
  • The formation of adiabatic shearband in tungsten heavy alloys(WHA) was studied in this investigation. Five prismatic specimens were loaded by high velocity impacts and treated as plane strain problems. To find out the effect of particle's volume ratio, specimens containing 81%, 93% and 97% volume percents of tungsten particles were used. Also the effects of particle's geometry and size on the formation of shearband were studied for 81% volume percent alloys by small size particle model, large size particle model and undulated particle models, and the results were discussed.be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, or incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.