DOI QR코드

DOI QR Code

Investigation of Goyang Tornado Outbreak Using X-band Polarimetric Radar: 10 June 2014

X밴드 이중편파레이더를 활용한 고양 토네이도 발생 사례 분석: 2014년 6월 10일

  • Jeong, Jong-Hoon (Numerical Data Application Division, National Institute of Meteorological Sciences, KMA) ;
  • Kim, Yeon-Hee (Applied Meteorology Research Division, National Institute of Meteorological Sciences, KMA) ;
  • Oh, Su-Bin (Numerical Data Application Division, National Institute of Meteorological Sciences, KMA) ;
  • Lim, Eunha (Observation Research Division, National Institute of Meteorological Sciences, KMA) ;
  • Joo, Sangwon (Numerical Data Application Division, National Institute of Meteorological Sciences, KMA)
  • 정종훈 (기상청 국립기상과학원 수치자료응용과) ;
  • 김연희 (기상청 국립기상과학원 응용기상연구과) ;
  • 오수빈 (기상청 국립기상과학원 수치자료응용과) ;
  • 임은하 (기상청 국립기상과학원 관측기반연구과) ;
  • 주상원 (기상청 국립기상과학원 수치자료응용과)
  • Received : 2015.11.19
  • Accepted : 2016.01.04
  • Published : 2016.03.31

Abstract

On 10 July 2014, tornado outbreak occurred over Goyang province in Korea. This was the first supercell tornado ever reported or documented in Korea. The characteristics of the supercell tornado were investigated using an X-band polarimetric radar, surface meteorological observation, wind profiler, and operational numerical weather prediction (Regional Data Assimilation and Prediction System, RDAPS). The supercell tornado developed along a preexisting dryline that was contributed to surface wind shear. The radar analyses examined here show that the supercell tornado indicated a hook echo with mesocyclone. The decending reflectivity core as well was detected before tornadogenesis and prior to intensification of supercell. The supercell tornado exhibited characteristics similar to typical supercell tornado over the Great Plains of the United States, such as hook echo, bounded weak echo region, and slower movement speed relative to the mean wind. Compared to the typical supercell tornado over U.S., this tornado showed horizontal scale of the mesocyclone was relatively smaller and left-mover.

Keywords

References

  1. Barber, D. A., and L. J. Mahrt, 1981: A statistical study of dependence of hailstorm severity on environmental conditions. Mon. Wea. Rev., 109, 1348-1352. https://doi.org/10.1175/1520-0493(1981)109<1348:ASSODO>2.0.CO;2
  2. Bluestein, H. B., and C. R. Parks, 1983: A synoptic and photographic climatology of low-precipitation severe thunderstorms in the southern plains. Mon. Wea. Rev., 111, 2034-2046. https://doi.org/10.1175/1520-0493(1983)111<2034:ASAPCO>2.0.CO;2
  3. Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711-1732. https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2
  4. Bosart, L. F., A. Seimon, K. D. LaPenta, and M. J. Dickinson, 2006: Supercell tornadogenesis over complex terrain: The Great Barrington, Massachusetts, tornado on 29 May 1995. Wea. Forecasting, 21, 897-922. https://doi.org/10.1175/WAF957.1
  5. Brooks, H. E., C. A. Doswell III, and R. P. Davies-Jones, 1993: Environmental helicity and the maintenance and evolution of low-level mesocyclones. The Tornado: Its Structure, Dynamics, Prediction, and Harzards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 97-104.
  6. Brown, R. A., and L. R. Lemon, 1976: Single Doppler radar vortex recognition. Part II: Tornadic vortex signatures. Preprints, 17th Radar Meteorology Conf., Seattle, WA, Amer. Meteor. Soc., 104-109.
  7. Brown, R. A., and R. J. Meitin, 1994: Evolution and morphology of two splitting thunderstorms with dominant left-moving members. Mon. Wea. Rev., 122, 2052-2067. https://doi.org/10.1175/1520-0493(1994)122<2052:EAMOTS>2.0.CO;2
  8. Browning, K. A., and R. J. Donaldson, 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci., 20, 533-545. https://doi.org/10.1175/1520-0469(1963)020<0533:AASOAT>2.0.CO;2
  9. Burgess, D. W., and L. R. Lemon, 1990: Severe thunderstorm detection by radar. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 619-647.
  10. Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422-424.
  11. Burgess, D. W., R. L. Lee, S. S. Parker, S. J. Keighton, and D. L. Floyd, 1995: A study of mini supercells observed by WSR-88D radars. Preprints, 27th Conf. on Radar Meteor., Vail, CO, Amer. Meteor. Soc., 4-6.
  12. Byko, Z., P. Markowski, Y. Richardson, J. Wurman, and E. Adlerman, 2009: Descending reflectivity cores in supercell thunderstorms observed by mobile radars and in a high-resolution numerical simulation. Wea. Forecasting, 24, 155-186. https://doi.org/10.1175/2008WAF2222116.1
  13. Corfidi, S. F., J. H. Merritt, and J. M. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11, 41-46. https://doi.org/10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2
  14. Davies-Jones, R. P., D. W. Burgess, L. R. Lemon, and D. Purcell, 1978: Interpretation of surface marks and debris patterns from the 24 May 1973 Union City, Oklahoma tornado. Mon. Wea. Rev., 106, 12-21. https://doi.org/10.1175/1520-0493(1978)106<0012:IOSMAD>2.0.CO;2
  15. Doswell, C. A., III, 2001: Severe convective storms-An overview. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 1-26.
  16. Fujita, T. T., 1958: Mesoanalysis of the Illinois tornadoes of 9 April 1953. J. Meteor., 15, 288-296. https://doi.org/10.1175/1520-0469(1958)015<0288:MOTITO>2.0.CO;2
  17. Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 1511-1534. https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
  18. Fulks, J. R., 1962: On the Mechanics of the Tornado. National Severe Storms Project Rep., No. 4, U. S. Weather Bureau.
  19. Hutchinson, T. A., and H. B. Bluestein, 1998: Prefrontal wind-shift lines in the plains of the United States. Mon. Wea. Rev., 126, 141-166. https://doi.org/10.1175/1520-0493(1998)126<0141:PWSLIT>2.0.CO;2
  20. Kennedy, A. D., E. N. Rasmussen, and J. M. Straka, 2007a: A visual observation of the 6 June 2005 descending reflectivity core. E-J. Severe Storms Meteor., 2(6).
  21. Kennedy, A. D., J. M. Straka, and E. N. Rasmussen, 2007b: A statistical study of the association of DRCs with supercells and tornadoes. Wea. Forecasting, 22, 1192-1199.
  22. Korea Institute of Civil engineering and building Technology (KICT), 2014: Operation of hydrological radar and development of a web-mobile warning platform, Korea Institute of Civil engineering and building Technology, 7 pp.
  23. Markowski, P. M., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 2887-2915. https://doi.org/10.1175/MWR-D-11-00336.1
  24. Meng, Z., and D. Yao, 2014: Damage survey, radar, and environment analyses on the first-ever documented tornado in Beijing during the heavy rainfall event of 21 July 2012. Wea. Forecasting, 29, 702-724. https://doi.org/10.1175/WAF-D-13-00052.1
  25. Rasmussen, E. N., J. M. Straka, M. S. Gilmore, and R. Davies-Jones, 2006: A preliminary survey of rear-flank descending reflectivity cores in supercell storms. Wea. Forecasting, 21, 923-938. https://doi.org/10.1175/WAF962.1
  26. Rose, S. F., P. V. Hobbs, J. D. Locatelli, and M. T. Stoelinga, 2004: A 10-yr climatology relating the locations of reported tornadoes to the quadrants of upperlevel jet streaks. Wea. Forecasting, 19, 301-309. https://doi.org/10.1175/1520-0434(2004)019<0301:AYCRTL>2.0.CO;2
  27. Rotunno, R., and B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271-292. https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2
  28. Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnic, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557-570. https://doi.org/10.1175/JAM2235.1
  29. Schultz, D. M., 2004: Cold fronts with and without prefrontal wind shifts in the central United States. Mon. Wea. Rev., 132, 2040-2053. https://doi.org/10.1175/1520-0493(2004)132<2040:CFWAWP>2.0.CO;2
  30. Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rearflank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 2935-2960. https://doi.org/10.1175/MWR-D-13-00240.1
  31. Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799-827. https://doi.org/10.1175/WAF-D-14-00026.1
  32. Suzuki, O., H. Niino, H. Ohno, and H. Nirasawa, 2000: Tornado-producing mini supercells associated with Typhoon 9019. Mon. Wea. Rev., 128, 1868-1882. https://doi.org/10.1175/1520-0493(2000)128<1868:TPMSAW>2.0.CO;2
  33. Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 2103-2125, https://doi.org/10.1175/MWR-D-11-00142.1
  34. Wakimoto, R. M., and B. E. Martner, 1992: Observations of a Colorado tornado. Part II: Combined photogrammetric and Doppler radar analysis. Mon. Wea. Rev., 120, 522-543. https://doi.org/10.1175/1520-0493(1992)120<0522:OOACTP>2.0.CO;2
  35. Wakimoto, R. M., H. V. Murphey, D. C. Dowell, and H. B. Bluestein, 2003: The Kellerville tornado during VORTEX: Damage survey and Doppler radar analyses. Mon. Wea. Rev., 131, 2197-2221. https://doi.org/10.1175/1520-0493(2003)131<2197:TKTDVD>2.0.CO;2
  36. Wakimoto, R. M., N. T. Atkins, and J. Wurman, 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 2233-2258. https://doi.org/10.1175/2010MWR3568.1
  37. Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. Bluestein, 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 1147-1170. https://doi.org/10.1175/BAMS-D-11-00010.1