• Title/Summary/Keyword: Shape Retrieval

Search Result 230, Processing Time 0.021 seconds

WLSD: A Perceptual Stimulus Model Based Shape Descriptor

  • Li, Jiatong;Zhao, Baojun;Tang, Linbo;Deng, Chenwei;Han, Lu;Wu, Jinghui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4513-4532
    • /
    • 2014
  • Motivated by the Weber's Law, this paper proposes an efficient and robust shape descriptor based on the perceptual stimulus model, called Weber's Law Shape Descriptor (WLSD). It is based on the theory that human perception of a pattern depends not only on the change of stimulus intensity, but also on the original stimulus intensity. Invariant to scale and rotation is the intrinsic properties of WLSD. As a global shape descriptor, WLSD has far lower computation complexity while is as discriminative as state-of-art shape descriptors. Experimental results demonstrate the strong capability of the proposed method in handling shape retrieval.

A Contents-based Drug Image Retrieval System Using Shape Classification and Color Information (모양분류와 컬러정보를 이용한 내용기반 약 영상 검색 시스템)

  • Chun, Jun-Chul;Kim, Dong-Sun
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.117-128
    • /
    • 2011
  • In this paper, we present a novel approach for contents-based medication image retrieval from a medication image database using the shape classification and color information of the medication. One major problem in developing a contents-based drug image retrieval system is there are too many similar images in shape and color and it makes difficult to identify any specific medication by a single feature of the drug image. To resolve such difficulty in identifying images, we propose a hybrid approach to retrieve a medication image based on shape and color features of the medication. In the first phase of the proposed method we classify the medications by shape of the images. In the second phase, we identify them by color matching between a query image and preclassified images in the first phase. For the shape classification, the shape signature, which is unique shape descriptor of the medication, is extracted from the boundary of the medication. Once images are classified by the shape signature, Hue and Saturation(HS) color model is used to retrieve a most similarly matched medication image from the classified database images with the query image. The proposed system is designed and developed especially for specific population- seniors to browse medication images by using visual information of the medication in a feasible fashion. The experiment shows the proposed automatic image retrieval system is reliable and convenient to identify the medication images.

Content-Based Image Retrieval Using Shape Correlogram (형태 Correlogram을 이용한 내용기반 영상검색)

  • Nam, Gi-Hyeon;Mun, Yeong-Sik
    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.215-222
    • /
    • 2001
  • 본 논문에서는 새로운 형태 특징값으로서 형태 correlogram을 제안하고 이를 기반으로 한 효과적인 내용기반 영삼검색(content-based image retrieval) 방법을 제시한다. 기존읜 색상 correlogram은 색상 정보에 공간적인 정보를 부여함으로써 영상검색 성능을 향상시켰다. 그러나 이 특징값은 형태 정보를 포함하고 있지 않아서 색상이 다르면서 비슷한 윤곽선 형태를 갖는 물체의 검색에는 좋은 효과를 보이지 못한다.이 문제를 해결하기 위해 예지(edge)들의 correlogram인 형태(shape) correlogram을 제안한다. 색상 correlogram이 색상들의 거리에 따른 상관관계를 나타내는데 반해 형태 correlogram은 에지 각도들의 상관관게를 나타낸다. 형태 correlogram은 gradient 축과 각도 축을 가지는 2차원 특징 벡터(feature vector)로 표현된다. 각 축은 24개 빈(bin)으로 나뉘어져서 총 576개의 원소를 가지게 된다. 또한 본 논문에서는 형태 correlogram의 데이터 크기를 줄이고, 회전에 대해 불변인 특성을 가지게 하기 위해 투영(projected) 형태 correlogram을 제안한다. 실험결과를 통하여 본 논문에서 제안한 형태 correlogram과 투영 형태 correlogram을 사용한 영상검색 방법이 기존의 방법보다 성능면에서 우수함을 입증한다.

  • PDF

Retrieval of Non-rigid 3D Models Based on Approximated Topological Structure and Local Volume

  • Hong, Yiyu;Kim, Jongweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3950-3964
    • /
    • 2017
  • With the increasing popularity of 3D technology such as 3D printing, 3D modeling, etc., there is a growing need to search for similar models on the internet. Matching non-rigid shapes has become an active research field in computer graphics. In this paper, we present an efficient and effective non-rigid model retrieval method based on topological structure and local volume. The integral geodesic distances are first calculated for each vertex on a mesh to construct the topological structure. Next, each node on the topological structure is assigned a local volume that is calculated using the shape diameter function (SDF). Finally, we utilize the Hungarian algorithm to measure similarity between two non-rigid models. Experimental results on the latest benchmark (SHREC' 15 Non-rigid 3D Shape Retrieval) demonstrate that our method works well compared to the state-of-the-art.

Shape-Based Subsequence Retrieval Supporting Multiple Models in Time-Series Databases (시계열 데이터베이스에서 복수의 모델을 지원하는 모양 기반 서브시퀀스 검색)

  • Won, Jung-Im;Yoon, Jee-Hee;Kim, Sang-Wook;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.10D no.4
    • /
    • pp.577-590
    • /
    • 2003
  • The shape-based retrieval is defined as the operation that searches for the (sub) sequences whose shapes are similar to that of a query sequence regardless of their actual element values. In this paper, we propose a similarity model suitable for shape-based retrieval and present an indexing method for supporting the similarity model. The proposed similarity model enables to retrieve similar shapes accurately by providing the combination of various shape-preserving transformations such as normalization, moving average, and time warping. Our indexing method stores every distinct subsequence concisely into the disk-based suffix tree for efficient and adaptive query processing. We allow the user to dynamically choose a similarity model suitable for a given application. More specifically, we allow the user to determine the parameter p of the distance function $L_p$ when submitting a query. The result of extensive experiments revealed that our approach not only successfully finds the subsequences whose shapes are similar to a query shape but also significantly outperforms the sequence search.

Complex Color Model for Efficient Representation of Color-Shape in Content-based Image Retrieval (내용 기반 이미지 검색에서 효율적인 색상-모양 표현을 위한 복소 색상 모델)

  • Choi, Min-Seok
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.267-273
    • /
    • 2017
  • With the development of various devices and communication technologies, the production and distribution of various multimedia contents are increasing exponentially. In order to retrieve multimedia data such as images and videos, an approach different from conventional text-based retrieval is needed. Color and shape are key features used in content-based image retrieval, which quantifies and analyzes various physical features of images and compares them to search for similar images. Color and shape have been used as independent features, but the two features are closely related in terms of cognition. In this paper, a method of describing the spatial distribution of color using a complex color model that projects three-dimensional color information onto two-dimensional complex form is proposed. Experimental results show that the proposed method can efficiently represent the shape of spatial distribution of colors by frequency transforming the complex image and reconstructing it with only a few coefficients in the low frequency.

Content-based Retrieval System using Image Shape Features (영상 형태 특징을 이용한 내용 기반 검색 시스템)

  • 황병곤;정성호;이상열
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • In this paper, we present an image retrieval system using shape features. The preprocessing to gain shape feature includes edge extraction using chain code. The shape features consist of center of mass, standard deviation, ratio of major axis and minor axis length. The similarity is estimated as comparing the features of query image with the features of images in database. Thus, the candidates of images are retrieved according to the order of similarity. The result of an experimentation is dullness for scale, rotation and translation. We evaluate the performance of shape features for image retrieval on a database with over 170 images. The Recall and the Precision is each 0.72 and 0.83 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

3D Object Retrieval Based on Improved Ray Casting Technique (개선된 레이 캐스팅을 이용한 3차원 객체 검색 기법)

  • Lee Sun-Im;Kim Jae-Hyup;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.72-80
    • /
    • 2006
  • In this paper, we propose a new descriptor for 3D model retrieval based on shape information. The proposed method consists of two steps including ray casting method and spherical harmonic function, considering geometric properties of model. In the ray casting method, an adaptive sampling is performed for external shape information. By increasing shape information included in the descriptor, we improve the discriminating power of the proposed descriptor. The coefficients of spherical harmonic function are adaptively calculated, considering geometric frequency characteristics. This makes the descriptor more compact and concise without decreasing the retrieval performance. By combining two methods, we achieve more improved retrieval results.

A Feature-Based Retrieval Technique for Image Database (특징기반 영상 데이터베이스 검색 기법)

  • Kim, Bong-Gi;Oh, Hae-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.2776-2785
    • /
    • 1998
  • An image retrieval system based on image content is a key issue for building and managing large multimedia database, such as art galleries and museums, trademarks and copyrights, and picture archiving and communication system. Therefore, the interest on the subject of content-based image retrieval has been greatly increased for the last few years. This paper proposes a feature-based image retrieval technique which uses a compound feature vector representing both of color and shape of an image. Color information for the feature vector is obtained using the algebraic moment of each pixel of an image based on the property of regional color distribution. Shape information for the feature vector is obtained using the Improved Moment Invariant(IMI) which reduces the quantity of computation and increases retrieval efficiency. In the preprocessing phase for extracting shape feature, we transform a color image into a gray image. Since we make use of the modified DCT algorithm, it is implemented easily and can extract contour in real time. As an experiment, we have compared our method with previous methods using a database consisting of 150 automobile images, and the results of the experiment have shown that our method has the better performance on retrieval effectiveness.

  • PDF

Image Information Retrieval Using DTW(Dynamic Time Warping) (DTW(Dynamic Time Warping)를 이용한 영상 정보 검색)

  • Ha, Jeong-Yo;Lee, Na-Young;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.423-431
    • /
    • 2009
  • There are various image retrieval methods using shape, color and texture features. One of the most active area is using shape and color information. A number of shape representations have been suggested to recognize shapes even under affine transformation. There are many kinds of method for shape recognition, the well-known method is Fourier descriptors and moment invariant. The other method is CSS(Curvature Scale Space). The maxima of curvature scale space image have already been used to represent 2-D shapes in different applications. Because preexistence CSS exists several problems, in this paper we use improved CSS method for retrieval image. There are two kinds of method, One is using RGB color information feature and the other is using HSI color information feature. In this paper we used HSI color model to represent color histogram before, then use it as comparison measure. The similarity is measured by using Euclidean distance and for reduce search time and accuracy, We use DTW for measure similarity. Compare with the result of using Euclidean distance, we can find efficiency elevated.

  • PDF