• Title/Summary/Keyword: Shape Recognition Algorithm

Search Result 233, Processing Time 0.025 seconds

Fast Shape Matching Algorithm Based on the Improved Douglas-Peucker Algorithm (개량 Douglas-Peucker 알고리즘 기반 고속 Shape Matching 알고리즘)

  • Sim, Myoung-Sup;Kwak, Ju-Hyun;Lee, Chang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.10
    • /
    • pp.497-502
    • /
    • 2016
  • Shape Contexts Recognition(SCR) is a technology recognizing shapes such as figures and objects, greatly supporting technologies such as character recognition, motion recognition, facial recognition, and situational recognition. However, generally SCR makes histograms for all contours and maps the extracted contours one to one to compare Shape A and B, which leads to slow progress speed. Thus, this paper has made simple yet more effective algorithm with optimized contour, finding the outlines according to shape figures and using the improved Douglas-Peucker algorithm and Harris corner detector. With this improved method, progress speed is recognized as faster.

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws (용접결함의 형상인식을 위한 신경회로망 알고리즘의 성능 비교)

  • 김재열;심재기;이동기;김창현;송경석;양동조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.271-276
    • /
    • 2003
  • In this study, we compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to two algorithm. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we comfirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

  • PDF

Two-Dimensional Partial Shape Recognition Using Interrelation Vector (상호관계 벡터를 이용한 이차원의 가려진 물체인식)

  • ;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.108-118
    • /
    • 1994
  • By using a concept of interrelation vector between line segments a new algorithm for partial shape recognition of two-dimensional objects is introduced. The interrelation vector which is invariant under translation rotation and scaling of a pair of line segments is used as a feature information for polygonal shape recognition. Several useful properties of the interrelation vector are also derived in relation to efficient partial shape recognition. The proposed algorithm requires only small space of storage and is shown to be computationally simple and efficient.

  • PDF

A New Shape-Based Object Category Recognition Technique using Affine Category Shape Model (Affine Category Shape Model을 이용한 형태 기반 범주 물체 인식 기법)

  • Kim, Dong-Hwan;Choi, Yu-Kyung;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.185-191
    • /
    • 2009
  • This paper presents a new shape-based algorithm using affine category shape model for object category recognition and model learning. Affine category shape model is a graph of interconnected nodes whose geometric interactions are modeled using pairwise potentials. In its learning phase, it can efficiently handle large pose variations of objects in training images by estimating 2-D homography transformation between the model and the training images. Since the pairwise potentials are defined on only relative geometric relationship betweenfeatures, the proposed matching algorithm is translation and in-plane rotation invariant and robust to affine transformation. We apply spectral matching algorithm to find feature correspondences, which are then used as initial correspondences for RANSAC algorithm. The 2-D homography transformation and the inlier correspondences which are consistent with this estimate can be efficiently estimated through RANSAC, and new correspondences also can be detected by using the estimated 2-D homography transformation. Experimental results on object category database show that the proposed algorithm is robust to pose variation of objects and provides good recognition performance.

  • PDF

Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws (초음파 검사 기반의 용접결함 분류성능 개선에 관한 연구)

  • 김재열;윤성운;김창현;송경석;양동조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.287-292
    • /
    • 2004
  • In this study, we made a comparative study of backpropagation neural network and probabilistic neural network and bayesian classifier and perceptron as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to four algorithms. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we confirmed advantages/disadvantages of four algorithms and identified application methods of few algorithms.

  • PDF

Facial Shape Recognition Using Self Organized Feature Map(SOFM)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.104-112
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation forthe identification of a face shape. The proposed algorithm uses face shape asinput information in a single camera environment and divides only face area through preprocessing process. However, it is not easy to accurately recognize the face area that is sensitive to lighting changes and has a large degree of freedom, and the error range is large. In this paper, we separated the background and face area using the brightness difference of the two images to increase the recognition rate. The brightness difference between the two images means the difference between the images taken under the bright light and the images taken under the dark light. After separating only the face region, the face shape is recognized by using the self-organization feature map (SOFM) algorithm. SOFM first selects the first top neuron through the learning process. Second, the highest neuron is renewed by competing again between the highest neuron and neighboring neurons through the competition process. Third, the final top neuron is selected by repeating the learning process and the competition process. In addition, the competition will go through a three-step learning process to ensure that the top neurons are updated well among neurons. By using these SOFM neural network algorithms, we intend to implement a stable and robust real-time face shape recognition system in face shape recognition.

Hand Gesture Recognition Algorithm using Mathematical Morphology

  • Park, Jong-Ho;Ko, Duck-Young
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.995-998
    • /
    • 2002
  • In this paper, we present a fast algorithm for hand gesture recognition of a human from an image by using the directivity information of the fingers. To implement a fast recognition system, we applied the morphological shape decomposition. A proposed gesture recognition algorithm has been tested on the 300 ${\times}$ 256 digital images. Our experiments using image acquired image camera have shown that the proposed hand gesture recognition algorithm is effective.

  • PDF

OBJECT RECOGNITION ALGORITHM (물체 인지 알고리즘)

  • Shon, Howoong;Cho, Hyun C;Kim, Youngkyung
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.247-253
    • /
    • 2004
  • In this paper, 3D recognizing algorithm which is based on the external shape feature is presented. Since many objects have the regular shape, if we posses the database of pattern and we recognize the object using the database of the object's pattern, it is possible to inspect and/or recognize the objects of many fields. This paper handles on the 3D object recognition algorithm using the geometrical pattern matching by 3D database.

  • PDF

The Study on the Feature Point Recognition and Classification of Radial Pulse (맥파의 특징점 인식과 파형의 분류에 관한 연구)

  • 길세기;김낙환;이상민;박승환;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.555-558
    • /
    • 1999
  • In this paper, Ire present the result of feature points recognition and classification of radial pulse by the shape of pulse wave. The recognition algorithm use the method which runs in parallel with both the data of ECG and differential pulse simultaneously to recognize the feature points. Also we specified 3-time elements of pulse wave as main parameters for diagnosis and measured them by execution of algorithm. then we classify the shape of radial pulse by existence and position of feature points.

  • PDF