• Title/Summary/Keyword: Shallow emitter

Search Result 10, Processing Time 0.026 seconds

Shallow Emitter형 태양전지 적용을 위한 In2O3:Sn 박막층 가변에 따른 광학적, 구조적 특성 변화에 대한 연구

  • Bong, Seong-Jae;Kim, Seon-Bo;An, Si-Hyeon;Park, Hyeong-Sik;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.349-349
    • /
    • 2014
  • ITO는 결정질 실리콘 태양전지의 anti-reflection coating (ARC) 층으로써 적합한 물질이다. ARC layer로써 구조적, 전기적 그리고 광학적 최적 조건의 특성을 얻기 위해는 높은 figure of merit(FOM)를 가져야 하고 결정방향 제어를 해야 한다. 본 연구에서는 결정질 실리콘 태양전지에 가장 적합한 ITO ARC layer의 특성 찾기 위해 Radio frequency magnetron sputter를 이용하여 공정 조건가변 실험을 진행 하였으며 높은 FOM을 갖는 ITO 반사방지막을 shallow emitter형 결정질 실리콘 태양전지에 적용하였으며 ITO 박막은 shallow emitter층과 완벽한 ohmic 접합을 이루었다. ITO ARC layer를 적용한 Shallow emitter형 태양전지는 81.59%의 fill factor와 $35.52mA/cm^2$의 단락전류를 보이며 17.27%의 광변환 효율을 보였다.

  • PDF

Electrical and Optical Properties for TCO/Si Junction of EWT Solar Cells (TCO/Si 접합 EWT 태양전지에 관한 전기적 및 광학적 특성)

  • Song, Jinseob;Yang, Jungyup;Lee, Junseok;Hong, Jinpyo;Cho, Younghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this work we have investigated electrical and optical properties of interface for ITO/Si with shallow doped emitter. The ITO is prepared by DC magnetron sputter on p-type monocrystalline silicon substrate. As an experimental result, The transmittance at 640nm spectra is obtained an average transmittance over 85% in the visible range of the optical spectrum. The energy bandgap of ITO at oxygen flow from 0% to 4% obtained between 3.57eV and 3.68eV (ITO : 3.75eV). The energy bandgap of ITO is depending on the thickness, sturcture and doping concentration. Because the bandgap and position of absorption edge for degenerated semiconductor oxide are determined by two competing mechanism; i) bandgap narrowing due to electron-electron and electron-impurity effects on the valance and conduction bands (> 3.38eV), ii) bandgap widening by the Burstein-Moss effect, a blocking of the lowest states of the conduction band by excess electrons( < 4.15eV). The resistivity of ITO layer obtained about $6{\times}10^{-4}{\Omega}cm$ at 4% of oxygen flow. In case of decrease resistivity of ITO, the carrier concentration and carrier mobility of ITO film will be increased. The contact resistance of ITO/Si with shallow doped emitter was measured by the transmission line method(TLM). As an experimental result, the contact resistance was obtained $0.0705{\Omega}cm^2$ at 2% oxygen flow. It is formed ohmic-contact of interface ITO/Si substrate. The emitter series resistance of ITO/Si with shallow doped emitter was obtained $0.1821{\Omega}cm^2$. Therefore, As an PC1D simulation result, the fill factor of EWT solar cell obtained above 80%. The details will be presented in conference.

  • PDF

Improvement of solar cell efficiency using selective emitter (Selective emitter를 이용한 태양전지 효율 향상)

  • Hong, Kuen-Kee;Cho, Kyeong-Yeon;Seo, Jae-Keun;Oh, Dong-Joon;Shim, Ji-Myung;Lee, Hyun-Woo;Kim, Ji-Sun;Shin, Jeong-Eun;Kim, Ji-Su;Lee, Eun-Joo;Lee, Soo-Hong;Lee, Hae-Seok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.56-59
    • /
    • 2011
  • The process conditions for high efficiency industrial crystalline Si solar cells with selective emitter were optimized. In the screen printed solar cells, the sheet resistance must be 50-60V/sq. because of metal contact resistance. But the low sheet resistance causes the increase of the recombination and blue response at the short wavelength. Therefore, the screen printed solar cells with homogeneous emitter have limitations of efficiency, and this means that the selective emitter must be used to improve cell efficiency. This work demonstrates the feasibility of a commercially available selective emitter process, based on screen printing and conventional diffusion process. Now, we improved cell efficiency from 18.29% to18.45% by transition of heavy emitter pattern and shallow emitter doping condition.

  • PDF

The investigation of forming the n+ emitter layer for crystalline silicon solar cells (결정질 실리콘 태양전지의 n+ emitter층 형성에 관한 특성연구)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Kim, Min-Jung;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.233-233
    • /
    • 2010
  • It is important to form the n+ emitter layer for generating electric potential collecting EHP(Electron-Hole Pair). In this paper the formation on the n+ emitter layer of silicon wafer has been made with respect to uniformity of shallow diffusion from a liquid source. The starting material was crystalline silicon wafers of resistivity $0.5{\sim}3\{Omega}{\cdot}cm$, p-type, thickness $200{\mu}m$, direction[100]. The formation of n+ emitter layer from the liquid $POCl_3$ source was carried out for $890^{\circ}C$ in an ambient of $N_2:O_2$::10:1 by volume. And than each conditions are pre-deposition and drive-in time. It has been made uniformity of at least. so, the average of sheet resistance was about 0.12%. In this study, sheet resistance was measured by 4-point prove.

  • PDF

Fabrication of Double Textured Selective Emitter Si Solar Cell Usning Electroless Etching Process (이중 텍스쳐 구조를 적용한 선택적 에미터 태양전지의 특성 분석)

  • Kim, Changheon;Lee, Jonghwan;Lim, Sangwoo;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.130-134
    • /
    • 2014
  • We have fabricated the selective emitter solar cell using double textured nanowires structure. The $40{\times}40mm2$-sized silicon substrates were textured to form the pyramid-shaped surface and the nanowires were fabricated by metal assisted chemical etching process using Ag nanoparticles, subsequently. The heavily doped and shallow emitters for selectiv eemitter solar cells were prepared through the thermal $POCl_3$ diffusion and chemical etch-back process, respectively. The front and rear electrodes were prepared following conventional screen printing method and the widths of fingers have been optimized. The selective emitter solar cell using double textured nanowires structure achieved a conversion efficiency of 17.9% with improved absorption and short circuit current density.

Research of Heavily Selective Emitter Doping for Making Solar Cell by Using the New Atmospheric Plasma Jet (새로운 대기압 플라즈마 제트를 이용한 태양전지용 고농도 선택적 도핑에 관한 연구)

  • Cho, I Hyun;Yun, Myung Soo;Son, Chan Hee;Jo, Tae Hoon;Kim, Dong Hea;Seo, Il Won;Rho, Jun Hyoung;Jeon, Bu Il;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2013
  • Doping process using laser is an important process in fabrication of solar cell for heat treatment. However, the process of using the furnace is difficult to form a selective emitter doping region. The case of using a selective emitter laser doping is required an expensive laser equipment and induce the wafer's structure damage due to high temperature. This study, we fabricated a new costly plasma source. Through this, we research the selective emitter doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (a few tens kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer. Atmospheric plasma treatment time was 15 s and 30 s, and current for making the plasma is 40 mA and 70 mA. We investigated a doping profile by using SIMS (Secondary Ion Mass Spectroscopy) and we grasp the sheet resistance of electrical character by using doping profile. As result of experiment, prolonged doping process time and highly plasma current occur a deeper doping depth, moreover improve sheet resistance. We grasped the wafer's surface damage after atmospheric pressure plasma doping by using SEM (Scanning Electron Microscopy). We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

A Study on the Characteristics of PSA Bipolar Transistor with Thin Base Width of 1100 ${\AA}$ (1100 ${\AA}$의 베이스 폭을 갖는 다결정 실리콘 자기정렬 트랜지스터 특성 연구)

  • Koo, Yong-Seo;An, Chul
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.10
    • /
    • pp.41-50
    • /
    • 1993
  • This paper describes the fabrication process and electrical characteristics of PSA (Polysilicon Self-Align) bipolar transistors with a thin base width of 1100.angs.. To realize this shallow junction depth, one-step rapid thermal annealing(RTA) technology has been applied instead of conventional furnace annealing process. It has been shown that the series resistances and parasitic capacitances are significantly reduced in the device with emitter area of 1${\times}4{\mu}m^{2}$. The switching speed of 2.4ns/gate was obtained by measuring the minimum propagation delay time in the I$^{2}$L ring oscillator with 31 stages.

  • PDF

Fabrication and Electrical Characteristics of $p^{+}$-n Ultra Shallow Junction Diode with Co/Ti Bilayer Silicide (Co/Ti 이중막 실리사이드를 이용한 $p^{+}$-n극저접합 다이오드의 제작과 전기적 특성)

  • Chang, Gee-Keun;Ohm, Woo-Yong;Chang, Ho-Jung
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.288-292
    • /
    • 1998
  • The p*-n ultra shallow junction diode with Co/Ti bilayer silicide was formed by ion implantation of $BF_{2}$ energy : 30KeV, dose : $5\times10^{15}cm^{-2}$] onto the n-well Si(100) region and RTA-silicidation of the evaporated Co($120\AA$)/Ti($40\AA$) double layer. The fabricated diode exhibited ideality factor of 1.06, specific contact resistance of $1.2\times10^{-6}\Omega\cdot\textrm{cm}^2$ and leakage current of $8.6\muA/\textrm{cm}^2$(-3V) under the reverse bias of 3V. The sheet resistance of silicided emitter region, the boron concentration at silicide/Si interface and the junction depth including silicide layer of ($500\AA$ were about $8\Omega\Box$, $6\times10^{19}cm^{-3}$, and $0.14\mu{m}$, respectively. In the fabrication of diode, the application of Co/Ti bilayer silicide brought improvement of ideality factor on the current-voltage characteristics as well as reduction of emitter sheet resistance and specific contact resistance, while it led to a little increase of leakage current.

  • PDF

Study of P-type Wafer Doping for Solar Cell Using Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 P타입 태양전지 웨이퍼 도핑 연구)

  • Yun, Myoungsoo;Jo, Taehun;Park, Jongin;Kim, Sanghun;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi-Chung
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.120-123
    • /
    • 2014
  • Thermal doping method using furnace is generally used for solar-cell wafer doping. It takes a lot of time and high cost and use toxic gas. Generally selective emitter doping using laser, but laser is very high equipment and induce the wafer's structure damage. In this study, we apply atmospheric pressure plasma for solar-cell wafer doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (1 kHz ~ 100 kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer (120 ohm/square). SIMS (Secondary Ion Mass Spectroscopy) are used for measuring wafer doping depth and concentration of phosphorus. We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

A Novel Large Area Negative Sputter Ion Beam source and Its Application

  • Kim, Steven
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.73-73
    • /
    • 1999
  • A large area negative metal ion beam source is developed. Kinetic ion beam of the incident metal ions yields a whole nucleation and growth phenomena compared to the conventional thin film deposition processes. At the initial deposition step one can engineer the surface and interface by tuning the energy of the incident metal ion beams. Smoothness and shallow implantation can be tailored according to the desired application process. Surface chemistry and nucleation process is also controlled by the energy of the direct metal ion beams. Each individual metal ion beams with specific energy undergoes super-thermodynamic reactions and nucleation. degree of formation of tetrahedral Sp3 carbon films and beta-carbon nitride directly depends on the energy of the ion beams. Grain size and formation of polycrystalline Si, at temperatures lower than 500deg. C is obtained and controlled by the energy of the incident Si-ion beams. The large area metal ion source combines the advantages of those magnetron sputter and SKIONs prior cesium activated metal ion source. The ion beam source produces uniform amorphous diamond films over 6 diameter. The films are now investigated for applications such as field emission display emitter materials, protective coatings for computer hard disk and head, and other protective optical coatings. The performance of the ion beam source and recent applications will be presented.

  • PDF