• Title/Summary/Keyword: Shallow Water Condition

Search Result 179, Processing Time 0.025 seconds

Analysis of Dependence on Wind Speed and Ship Traffic of Underwater Ambient Noise at Shallow Sea Surrounding the Korean Peninsula (한반도 주변해역 수중배경소음의 풍속과 선박분포에 따른 의존성 분석)

  • 최복경;김봉채;김철수;김병남
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.233-241
    • /
    • 2003
  • It is statistically analyzed the underwater ambient noise measured at 13 sites less than 200 m deep in the shallow water surrounding the Korean Peninsula for 9 yews from 1990 to 1998 in various environmental conditions. Frequency spectra were obtained with the 1/3-octave band center frequencies from 25㎐ to 20 ㎑. The analyzed shallow water noise spectra were some different from the deep water blown as the Wenz spectra. We could know that the ambient noise level shows higher than it in same condition by effect of various ship activity and the coastal noise, surface waves, and so on. As a result, we produced the coastal ambient noise spectra curve based on these results in shore of the Korea Peninsula.

A Study on the Safe Manoeuvring of Ships Navigating in Shallow Water under Strong Environmental Forces (천수역에서 외력하에 근접 항행중인 선박의 안전조선에 관한 연구)

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.735-740
    • /
    • 2010
  • This paper focuses on the effects of hydrodynamic forces between overtaking and overtaken vessels moving under the influences of external forces, such as strong wind and current in shallow water, in which condition the ship handling may become very complex. The purpose of this paper is to develop a guideline for safe conducting distance between two ships according to the velocity and the significance of external disturbances.

Experimental Study of Ship Squat for KCS in Shallow Water (KCS선형의 천수영역에서의 자세 변화에 대한 실험적 연구)

  • Yun, Kunhang;Park, Byoungjae;Yeo, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.34-41
    • /
    • 2014
  • When a ship sails in shallow water, it is well known that an additional sinkage and trim of the ship(squat) is caused by change of hydrodynamic force between the seabed and the bottom of a ship. In this paper, to examine this phenomenon by model tests, the squat of KCS model ship at a low speed is measured by the vision based ship motion measurement system during HPMM tests. Various combinations of a ship speed, a rudder angle and a drift angle were tested at three depth conditions(H/T = 1.2, 1.5 & 2.0). As a result, increase of the ship's speed and ship's drift angle caused an increase in ship squat, but the ship's rudder angle did not. The rate of increase in ship squat was the most at H/T = 1.2 condition. Lastly these experimental results are compared to the results by three empirical formulas and two CFD methods. The tendency of ship squat measured by experiment is similar to those of empirical formulas.

A Numerical Study on the Effects of Maneuverability of Ship with Low Forward Speed by Increasing Rudder Force (타력 증대가 저속 운항 선박의 조종성능에 미치는 영향에 관한 수치적 연구)

  • Kim, Hyun-Jun;Kim, Sang-Hyun;Kim, Dong-Young;Kim, In-Tae;Han, Ji-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.217-227
    • /
    • 2016
  • Recent accidents of crude oil tankers have resulted in sinking, grounding of vessels and significant levels of marine pollution. Therefore, International Maritime Organization (IMO) has been strengthening the regulations of ship maneuvering performance in MSC 137. The evaluation of maneuvering performance can be made at the early design stage; it can be investigated numerically or experimentally. The main objective of this paper was to investigate the maneuvering performance of a VLCC due to the increase of rudder force at an early design stage for low speed in shallow water conditions. It was simulated in various operating condition such as deep sea, shallow water, design speed and low speed by using the numerical maneuvering simulation model, developed using MMG maneuvering motion equation and KVLCC 2 (SIMMAN 2008 workshop). The effect of increasing the rudder force can be evaluated by using numerical simulation of turning test and ZIG-ZAG test. The research showed that, increasing the rudder force of a VLCC was more effective on improving the turning ability than improving the course changing ability especially. The improvement of turning ability by the rudder force increasing is most effective when the ship is sailing in shallow water at low forward speed.

Hydrogeochemistry of shallow groundwater in a small catchment area, Cheonan, Korea: Emphasis on redox condition and nitrate problem

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Gi-Tak;Park, Byoung-Young;Kim, Kangjoo;Lee, Chul-Woo;Kim, Hyoung-Soo
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.99-102
    • /
    • 2003
  • Shallow groundwater systems are highly vulnerable to anthropogenic contamination and are characterized by a variety of redox condition. The redox state is a key parameter to control the nitrate contamination which is related to nitrification or denitrification processes. In relation to the control of nitrate problem, it is very important to understand the source, transport and fate of nitrogen compounds in a groundwater system. (omitted)

  • PDF

Numerical Simulations of Flood Inundations in Guri (구리지역의 홍수범람해석)

  • Yu Jae Hong;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1174-1178
    • /
    • 2005
  • In this study, flood inundations have been simulated by using the numerical model FLUMEN solving the shallow-water equations with a finite volume method. Before applying to a real problem, the numerical model is first applied to simplified problems. Obtained numerical results are verified by comparing to available analytical solutions and laboratory measurements. Reasonable agreements are observed. The model is then applied to a simulation of flood events with real geometries. The results of the present study provide basic informations for a flood inundation map.

  • PDF

The effect of small forward speed on prediction of wave loads in restricted water depth

  • Guha, Amitava;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.305-324
    • /
    • 2016
  • Wave load prediction at zero forward speed using finite depth Green function is a well-established method regularly used in the offshore and marine industry. The forward speed approximation in deep water condition, although with limitations, is also found to be quite useful for engineering applications. However, analysis of vessels with forward speed in finite water depth still requires efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in predicting added resistance is incorporated. This implementation provides the unique capability of predicting added resistance in finite water depth with flare angle effect using a Green function approach. The results are validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with forward speed is presented.

The Comparative Study on the Fish Community in Lake Chungpyung and Lake Paldang (청평호 및 팔당호 어류군집 비교 연구)

  • Park, Hae-Kyung;Lee, Jangho;Yun, Seuk-Hwan;Choi, Myung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.7-18
    • /
    • 2013
  • We compared the structure of fish community and condition of major fish species in Lake Chungpyung and Lake Paldang, which are relatively shallow, meso-eutrophic, cascading dam reservoirs on the North Han River. Two lakes have wide littoral zone in the lakeside providing similarly good habitat for fishes, whereas fishery and water recreational activities such as motorboating, water skiing are allowed in Lake Chungpyung but are prohibited in Lake Paldang. The average lengths of large size fishes in Lake Chungpyung are shorter than those of same species in Lake Paldang, resulting in the slight distortion of generation distribution of those species in Lake Chungpyung, possibly owing to the active fishery such as fixed shore net fishing, gill net fishing and angling. Meanwhile the condition of fishes represented by the length-weight relationship of fish species did not show the significant differences between two lakes and showed normal condition. To evaluate the impact of physical disturbance such as loud noise and turbulent wave from water recreational activities to fishes precisely, further studies including physiological responses to stress an spawing activity should be needed.

A Numerical Analysis of a Discontinuous Flow with TVD Scheme (TVD기법을 이용한 불연속 흐름의 수치해석)

  • Jeon, Jeong-Sook;Lee, Bong-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.597-608
    • /
    • 2003
  • A transcritical flow occurs when the width and slope of a channel are varying abruptly. In this study, the transcritical flow in a two-dimensional open channel is analyzed by using the shallow-water equations. A weighted average flux scheme that has flux limiter with a total variation diminishing condition is introduced for a second-order accuracy in time and space, and non- spurious oscillations at discontinuous points. A HLLC method with three wane speeds is employed to calculate the Riemann problem. To overcome difficulties resulting from variation of channel sections in a two-dimensional analysis of transcritical flow, the numerical model is developed based on a generalized grid system.

Moving boundary condition for simulation of inundation (범람 모의를 위한 이동경계조건)

  • Lin, Tae-hoon;Lee, Bong-Hee;Cho, Dae-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.937-947
    • /
    • 2003
  • A shoreline, which has no the water depth, moves continuously as waves rise up and recede. Therefore, a special boundary treatment is required to track properly the movements of the shoreline in numerical modeling of the behavior of tsunamis or tides near a coastal zone. In this study, convective terms in nonlinear shallow-water equations are discretized explicitly by using a second-order upwind scheme to describe a moving shoreline more accurately. An oscillatory flow motion in a circular paraboloidal basin has been employed to validate the performance of the developed numerical model. Computed results of instantaneous free surface displacements are compared with those of analytical solutions and existing numerical solutions. The run-up heights in the vicinity of a circular island have also been calculated and obtained numerical results have been shown against available laboratory measurements. A good agreement has been observed.