• Title/Summary/Keyword: Shaking frequency

Search Result 196, Processing Time 0.026 seconds

Modal Parameter Extraction Using a Digital Camera (카메라를 이용한 구조물의 동특성 추출)

  • Kim, Byeong-Hwa
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1229-1236
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted fi:on a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.

Seismic damage detection of a reinforced concrete structure by finite element model updating

  • Yu, Eunjong;Chung, Lan
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.253-271
    • /
    • 2012
  • Finite element (FE) model updating is a useful tool for global damage detection technique, which identifies the damage of the structure using measured vibration data. This paper presents the application of a finite element model updating method to detect the damage of a small-scale reinforced concrete building structure using measured acceleration data from shaking table tests. An iterative FE model updating strategy using the least-squares solution based on sensitivity of frequency response functions and natural frequencies was provided. In addition, a side constraint to mitigate numerical difficulties associated with ill-conditioning was described. The test structure was subjected to six El Centro 1942 ground motion histories with different Peak Ground Accelerations (PGA) ranging from 0.06 g to 0.5 g, and analytical models corresponding to each stage of the shaking were obtained using the model updating method. Flexural stiffness values of the structural members were chosen as the updating parameters. In model updating at each stage of shaking, the initial values of the parameter were set to those obtained from the previous stage. Severity of damage at each stage of shaking was determined from the change of the updated stiffness values. Results indicated that larger reductions in stiffness values occurred at the slab members than at the wall members, and this was consistent with the observed damage pattern of the test structure.

Analysis of Dynamic Behavior of a Single Pile in Dry Sand by 1g Shaking Table Tests (1g 진동대 실험을 통한 건조사질토에 근입된 단독말뚝의 동적 거동 분석)

  • Lim, Hyun-Sung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.17-28
    • /
    • 2017
  • This paper presents the investigation of dynamic behavior of a single pile in dry sand based on 1g shaking table tests. The natural frequency of soil-pile system was measured, and then a range of loading frequency was determined based on the natural frequency. Additionally, the studies were performed by controlling loading accelerations, pile head mass and connectivity conditions between pile and cap. Based on the results obtained, relatively larger pile head displacement and bending moment occur when the loading frequency is larger than the natural frequency of soil-pile system. However, the slope of the p-y curve is smaller in the similar loading frequency. Also, it was found that inertia force like input acceleration and pile head mass, and relation of the natural frequency of soil-pile system and input frequency have a great influence on the slope of dynamic p-y curve, while pile head conditions don't.

Characteristics on the Vertical Load Capacity Degradation for Impact driven Open-ended Piles During Simulated Earthquake /sinusoidal Shaking, (타격관입 개단말뚝의 동적진동에 의한 압축지지력 저감특성)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.51-64
    • /
    • 1996
  • After the model open-ended pile attached with strain gages was driven into a pressure chamber, in which the saturated microfine sand was contained, the static compression loading test was performed for that pile. Based on the test results, ultimate pile capacity was determined. Then, either simulated earthquake shaking or sinusoidal shaking was applied to the pile with the sustained certain level OP ultimate pile load. Then, pile capacity degradations characteristics during shaking were studied. Pile capacity degradation during two different shakings were greatly different. During the simulated earthquake shaking, capacity degradation depended upon the magnitude of applied load. When the load applied to the pile top was less than 70% of ultimate pile capacidy, pile capacity degradation rate was less than 8%, and pile with the sustained ultimate pile load had the degradation rate of 90%. Also, most of pile capacity degradation was reduced in outer skin friction and degradation rate was about 80% of ultimate pile capacity reduction. During sinusoidal shaking, pile capacity degradation did not depend on the magnitude of applied load. It depended on the amplitude and the frequency , the larger the amplitude and the fewer the frequency was, the higher the degradation rate was. Reduction pattern of unit soil plugging (once depended on the mode of shaking. Unit soil plugging force by the simulated earthquake shaking was reduced in the bottom 3.0 D, of the toe irrespective of the applied load, while reduction of unit soil plugging force by sinusoidal shaking was occurred in the bottom 1.0-3.0D, of the toe. Also, the soil plugging force was reduced more than that during simulated earthquake shaking and degradation rate of the pile capacity depended on the magnitude of the applied load.

  • PDF

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.599-608
    • /
    • 2011
  • FPS(friction pendulum system) is an isolation system which is possible to isolate structures from earthquake by pendulum characteristic. Natural frequencies of the structures could be determined by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(cone-type friction pendulum bearing system) was developed for controlling the acceleration and displacement of structure by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, superstructures on CFPBS could be isolated from earthquake. In this study, seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

Shaking table test on soil-structure interaction system (2) : Superstructure with foundation on layered soil (건물-지반 시스템에 관한 진동대실험 (2) : 성층지반위의 구조물)

  • Lee Sung-Kyung;Masato Motosaka;Min Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.529-537
    • /
    • 2005
  • This paper proposes the shaking table testing method, without any soil specimen only using building model as an experimental part, considering dynamic soil-structure interaction based on the substructure method. The two-layered soil is assumed as a soil model of the entire soil-structure interaction syhstem(SSI) in this paper. Differently from the constant soil stiffness, the frequency-dependent dynamic soil stiffness is approximated for the case of both acceleration and velocity feedback, respectively. The interaction force is observed from measuring the accelerations at superstructure. Using the soil filters corresponding to the approximated dynamic soil stiffness, the shaking table drives the acceleration or velocity, which the needed motion to give the building specimen the SSI effects. Experimental results show the applicability the proposed methodologies to the shaking table test considering dynamic soil-structure interaction.

  • PDF

Design of Shaking Beam for Piezoelectric Linear Ultrasonic Motor

  • Yoon, Seok-Jin;Park, Ji-Won;Kim, Sang-Jong;Yu, Yeon-Tae;Kim, Hyun-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1062-1066
    • /
    • 2003
  • Design of a piezoelectric actuator for the ultrasonic motor must ensure that contact point has elliptic trajectory of movement. The new idea of an elliptic trajectory formation of the piezoelectric actuator is investigated in the paper. Shaking beam for the piezoelectric linear ultrasonic motor was introduced to realize this new idea. The principle is based on the excitation of longitudinal and flexural vibrations of the actuator by using two sources of longitudinal mechanical vibrations shifted by $\pi$/2. Mode-frequency and harmonic response analyses of the actuator based on FEM have been carried out. The moving trajectory of the contact point has been defined. Finally, The experimental research of shaking beam has been confirmed an opportunity of the elliptic trajectory reception with the help of one stable mode of the vibrations.

The Vibration Performance Experiment of Tuned Liquid Damper and Tuned Liquid Column Damper

  • Kim Young-Moon;You Ki-Pyo;Cho Ji-Eun;Hong Dong-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.795-805
    • /
    • 2006
  • Tuned Liquid damper and Tuned Liquid Column are kind of passive mechanical damper which relies on the sloshing of liquid in a rigid tank for suppressing structural vibrations. TLD and TLCD are attributable to several potential advantages - low costs ; easy to install in existing structures : effective even for small-amplitude vibrations. In this paper, the shaking table experiments were conducted to investigate the characteristics of water sloshing motion in TLD (rectangular, circular) and TLCD. The parameter obtained from the experiments were wave height, base shear force and energy dissipation. The shaking table experiments show that the liquid sloshing relies on amplitude of shaking table and frequency of tank. The TLCD was more effective control vibration than TLD.

Applications of Seismic Test using Multi-platform Shaking Table System (내진실험 연구를 위한 다지점 가진 지동대의 활용)

  • Choi, Hyoung-Suk;Kim, Nam-Sik;Cheung, Jin-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.126-131
    • /
    • 2013
  • As the testing instrument for seismic research, the multi-platform shaking table system of SESTEC in the Pusan National University was introduced to suggest the multi-support shaking table testing methods and also to investigate its ability and applicability. 2 spans single-pylon cable-stayed bridge model, 3 spans girder bridge model and nuclear piping system model are presented and the acceleration and displacement table feedbacks of the each tests are compared to verify the simultaneous excitation ability in time domain and frequency domain.

  • PDF

Verification of Similitude Law for 1g Shaking Table Tests through Modeling of Models (모형의 모형화 기법을 이용한 1g 진동대 실험을 위한 상사법칙의 유효성 검증)

  • Hwang Jae-Ik;Kim Sung-Ryul;Jang In-Sung;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.91-103
    • /
    • 2004
  • A series of shaking table model tests were performed to verify the validity of similitude law, which is suggested by lai (1989) to simulate the dynamic behavior of soil-fluid-structure system for is shaking table tests. In the tests, the similitude law suggested by lai was applied to determine the length and the time scaling factors. Also, the steady state concept was used in determining the density of model backfill soil, which is a key factor in simulating the development of excess pore pressure during shaking. The similitude law was verified by checking whether three different sizes of quay walls show the identical behavior or not. The similar responses of acceleration, excess pore pressure and horizontal displacement of walls were obtained far the small and large models. However, the medium model showed larger responses than those of the small and large models because of the resonance between the frequency of input acceleration and the natural frequency of the wall system. In addition, the vertical displacement and rotational angle of the walls became larger with the increase of model size.