• Title/Summary/Keyword: Shaft vibration

Search Result 651, Processing Time 0.032 seconds

Synchronous Vibration Control of a Rigid Rotor System using Active Air Bearing

  • Kwon, Tae-Kyu;Qiu, Jin-Hao;Tani, Jun-Ji;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.87-94
    • /
    • 2002
  • This paper presents the synchronous vibration control of a rotor system using an Active Air Bearing(AAB). In order to suppress the synchronous vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by the pivots containing piezoelectric actuators and their radial positions can be actively controlled by applying voltage to the actuators. Disturbances and various kinds of external forces can cause the shaft vibration as well as the change of the air film thickness. The dynamic behaviors of a rotary system supported by two tilting-pad gas bearings and its active stabilization using the tilting-pads as actuators are investigated numerically. The PID controller is applied to the tilting-pad gas bearing system with three pads, two of which contain piezoelectric actuators. To test the validity of the theoretical method, the performance of this control method is evaluated through experiments. The experimental results show the effectiveness of the control system for suppressing the unbalanced response of the rigid modes.

Relationship between Rock Quality Designation and Blasting Vibration Constant "K" & Decay Constant "n" by Bottom Blasting Pattern (바닥발파에서 암질지수(RQD)와 발파진동상수 K, n의 관계)

  • 천병식;오민열
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.55-68
    • /
    • 1995
  • This paper is the analysis of the relationship between RQD and decay constant, blasting vi bration constant of cube root scaling and square root scaling, through experimental blast ins test in subway construction for excavation of shaft hole by bottom blasting. The magnitude of particle velocity is largely effected by the distance from blasting source, the maximum charge per delay and the properties of ground. In order to verify the effects of ground properties on blast-induced vibration, the relation-ship between magnitude of blasting vibration and Rock Quality Disignation which stands for joint property was studied. The results of test are verified that blasting vibration constant "K" and the absolute value("n") of decay constant relatively increse as RQD increased. According to the result, it can be predict the particle velocity by the blast -induced vibration in bottom blasting pattern.om blasting pattern.

  • PDF

PID Control of a Synchronous Rotor System Vibration with Active Air Bearing (능동 공기 베어링에 의한 로터계 동기진동의 PID제어)

  • Gwon, Dae-Gyu;Lee, Yeong-Chun;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.32-39
    • /
    • 2001
  • This paper presents the synchronous vibration control of a rotor system using an Active Air Bearing(AAB). In order to suppress the synchronous vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by the pivots containing piezoelectric actuators and their radial positions can be actively controlled by applying voltage to the actuators. Disturbances and various kinds of external force can cause the shaft vibration as well as the change of the air film thickness. The dynamic behaviors of a rotary system supported by two tilting-pad gas bearings and its active stabilization using the tilting-pads as actuators are investigated numerically. The PID controller is applied to the tilting-pad gas bearing system with three pads, two of which contain piezoelectric actuators. To test the vapidity of the theoretical method, the performance of this control method is evaluated through experiments. The experimental results show the effectiveness of the control system for suppressing the unbalanced response of the rigid modes.

  • PDF

Development of Vibration Analysis Program for Anti-resonance Design of Vertical-axis Tidal Current Turbine (조류발전용 수직축 터빈의 공진 회피 설계를 위한 프로그램 개발)

  • Bae, Jae-Han;Seong, Hye-Min;Cho, Dae-Seung;Kim, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.336-341
    • /
    • 2012
  • The vertical-axis tidal current turbine (VAT) consisting of blades, struts to support blades, shaft, generator and so forth requires anti-resonance design against fluid fluctuation forces generated on blades to ensure its stable operation. In this study, a free vibration analysis program based on the finite element method is developed for efficient anti-resonance design of VAT in the preliminary design stage. In the finite element modeling, the VAT structure components are regarded as beam elements. Added masses due to the fluid and structure interaction of VAT evaluated by empirical formulas are considered as lumped mass elements. In addition, input parameters required for the analysis can be automatically prepared from the principal dimensions of VAT to make anti-resonance design more convenient. The validity of applied methods is verified by the comparison of the numerical results obtained from MSC/Nastran and the developed program for two VAT models.

  • PDF

Robust Control of Synchronous Vibration of a Rotor System with PZT Actuator (PZT 액추에이터를 이용한 로터계 동기진동의 강인제어)

  • Gwon, Dae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.711-719
    • /
    • 2002
  • This paper presents the synchronous vibration control of a rotor system using an active air bearing(AAB). In order to suppress the synchronous vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by pivots containing piezoelectric actuators and their radial position can be actively controlled by applying voltage to the actuators. Thus, disturbances, i. e. various kinds of external force can cause shaft vibration as well as change of the air film thickness. The dynamic behavior of a rotary system supported by two tilting-pad gas bearings and its active stabilization using the tilting-pads as actuators are investigated numerically. The $\mu$ synthesis are applied to the AAB system with three pads, two of which contain piezoelectric actuators. To test the validity of the theoretical method, the performance of this control method is evaluated through experiments. The experimental results also show the effectiveness of the control system for suppressing the unbalanced response of the rigid modes.

Adaptive Wavelet Analysis of Non-Stationary Vibration Signal in Rotor Dynamics

  • Ji Guoyi;Park Dong-Keun;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.26-30
    • /
    • 2005
  • A rotor run-up or run-down process provide more useful information for modal analysis than normal operation conditions. A traditional difficulty associated with rotor run-up or run-down analysis is the non-stationary nature of vibration data. This paper compares Short-Time Fourier Transform (STFT) and the wavelets analysis in these non-stationary signal analyses. An Adaptive Wavelet Analysis (AWT) is proposed to analyze these signals. Although simulations and experiments in a simple rotor-bearing system show that both STFT and AWT can be used to analyze non-stationary vibration signals in rotor dynamics, proposed AWT provides better results than STFT analysis. From the amplitude-frequency curve obtained by AWT, the modal frequency and damping ratio are calculated. This paper also analyzes the characteristics of signals when the shaft touches the outer hoop in a run-up process. The AWT can give a good result in this complex dynamic analysis of the touching process.

Deep Learning based Abnormal Vibration Prediction of Drone (딥러닝을 통한 드론의 비정상 진동 예측)

  • Hong, Jun-Ki;Lee, Yang-Kyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.67-73
    • /
    • 2021
  • In this paper, in order to prevent the fall of the drone, a study was conducted to collect vibration data from the motor connected to the propeller of the drone, and to predict the abnormal vibration of the drone using recurrent neural network (RNN) and long short term memory (LSTM). In order to collect the vibration data of the drone, a vibration sensor is attached to the motor connected to the propeller of the drone to collect vibration data on normal, bar damage, rotor damage, and shaft deflection, and abnormal vibration data are collected through LSTM and RNN. The root mean square error (RMSE) value of the vibration prediction result were compared and analyzed. As a result of the comparative simulation, it was confirmed that both the predicted result through RNN and LSTM predicted the abnormal vibration pattern very accurately. However, the vibration predicted by the LSTM was found to be 15.4% lower on average than the vibration predicted by the RNN.

A Study on the Measurement of Roundness Profile for Rotating Object Using Two Points in Succession Measuring Method (축차 2점법을 이용한 회전체의 진원도 프로파일 측정에 관한 연구)

  • Lee, Min-Ki;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1029-1034
    • /
    • 2010
  • In this paper, we present the roundness profile and run-out error measurement for a rotating shaft. The devices for measuring the roundness require a precision rotation table which is used as a reference to obtain the circular profile. Therefore, the roundness measuring system is expensive and requires precision manufacturing. The two-point method for succession measurement has been used to obtain a linear profile or used in straightness measurement using two displacement measuring devices. In this paper, the method is used for measuring the circular profile of a rotating shaft. A method to remove the vibration of the shaft, i.e., the run-out, is used, and the original circular profile is obtained from the measured raw data that excludes the run-out error of the rotating shaft. This method will be useful for obtaining the precise circular profile without using a precision reference circular artifact.

Dynamic Properties of Tiny Piezoelectric linear Motor by Applied Voltage (인가 전압에 따른 초소형 압전 리니어 모터의 동특성)

  • Yoo, Kyoung-Ho;Ko, Hyun-Phill;Kang, Chong-Yun;Kim, Hyun-Jai;Ko, Tae-Kuk;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.62-63
    • /
    • 2005
  • Recently, a tiny piezoelectric linear motor using a vibration made of the transducer has been invented. The motor consists of a shaft, mobile element, and piezoelectric transducer using a piezoelectric radial mode bimorph disk. The fringe of the bimorph disk is fixed firmly which means this area has no degree of freedom. Therefore, the radial mode of the tranducer transfers to the flexurd mode. The mobile elements move along the shaft by the impact force generated by the flexurd mode of the piezoelectric transducer. The piezoelectric ceramic disks have thickness of 0.1 mm and diameter of 3.5 mm. The elastic disk is introduced between two disks of the ceramic, which has thickness of 0.1 mm and diameter of 3.8 mm. The fringe of the elastic disk is fixed by a brass cylinder which height is 1.2 mm. The Pyrex shaft is used which has diameter of 1 mm and height of 10 mm. The motors are operated at their resonant frequencies. The dynamic properties of the motor have been intensively measured and analyzed according to the applied voltage wave forms at the resonant frequencies. As the sawtooth and rectangular voltage waves are applied, the velocity, the thrust force, and the velocity dependence of the mobile position are measured. The dynamic characteristics are also analyzed within a period of each wave using laser vibrometer. The velocity of the mobile is moderately constant along the shaft. The better dynamic characteristics are obtained in the case of applying the rectangular wave.

  • PDF

Analysis of Tilting Pad Journal Bearing Characteristics and Rotordynamics for Centrifugal Compressors Using Multiphysics Software (Multiphysics Software를 활용한 원심 압축기용 틸팅 패드 저널 베어링 특성과 회전체 동역학 분석)

  • Soyeon Moon;Jongwan Yun;Sangshin Park
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.268-272
    • /
    • 2023
  • This study explores the characteristics of tilting pad journal bearings used in the high-speed rotating shaft systems of centrifugal compressors. A centrifugal compressor is a high-speed rotating machine that is widely used to compress gases or vapors employed in various industrial applications. It transfers the centrifugal force of a fast-spinning impeller to the fluid and compresses it under high pressure. Many high-speed rotating shaft systems, which require high stability, use tilting pad journal bearings. The characteristics of these bearings can vary depending on several properties, and identifying the appropriate characteristics is essential to optimize the design on a case-to-case basis. In this study, the authors perform a time-dependent analysis of the properties of tilting pad journal bearings and the rotordynamics of the rotating shaft system using COMSOL Multiphysics software. Specifically, the authors analyze the characteristics of the tilting pad journal bearings by performing a parametric sweep using parameters such as pad clearance, maximum tilting angle, preload, number of pads, and pad pivot offset. The authors then use the results of the bearing-characteristics analysis to evaluate the vibration of the rotating shaft and verify its operation within a desirable range. The understanding gained from this study will allow us to determine the optimal properties of these bearings and the limiting operational speed using COMSOL Multiphysics software.