• Title/Summary/Keyword: Shaft misalignment

Search Result 62, Processing Time 0.03 seconds

Development of intelligent fault diagnostic system for mechanical element of wind power generator (지능형 풍력발전 기계적 요소 고장진단 시스템 개발)

  • Moon, Dea-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • Recently, a rapid growth of wind power system as a leading renewable energy source has compelled a number of companies to develop intelligent monitoring and diagnostic system. Such systems can detect early mechanical faults, which prevents from costly repairs. Generally, fault diagnostic system for wind turbines is based on vibration and process signal analysis. In this work, different type of mechanical faults such as mass unbalance and shaft misalignment which can always happen in wind turbine system is considered. The proposed intelligent fault diagnostic algorithm utilizes artificial neural network and Wavelet transform. In order to verify the feasibility of the proposed algorithm, mechanical fault generation experimental system manufactured by Gaon corporation is utilized.

Effects of Bearing Characteristic on the Gear Load Distribution in the Slewing Reducer for Excavator (굴삭기용 선회감속기의 베어링 특성이 기어 하중 분포에 미치는 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.8-14
    • /
    • 2014
  • A slewing reducer consists of two planetary gearsets which require a good load distribution over the gear tooth flank for enhanced durability. This work investigates how the bearing characteristics influence the load distribution over the gear tooth flank. A complete system model is developed to analyze a slewing reducer, including the non-linear mesh stiffness of the gears and the non-linear stiffness of bearings. The results indicate that the type, arrangement and preload of the output shaft bearings greatly influence the gear mesh misalignment, contact pattern, face load factor, gear safety factor and lifetimes of the parts.

Development of Elastic Shaft Alignment Design Program (선체변형을 고려한 탄성 축계정렬 설계 프로그램 개발)

  • Choung Joon-Mo;Choe Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.512-520
    • /
    • 2006
  • The effects of flexibilities of supporting structures on shaft alignment are growing as ship sizes are Increasing mainly for container carrier and LNG carrier. But, most of classification societies not only do not suggest any quantitative guidelines about the flexibilities but also do not have shaft alignment design program considering the flexibility of supporting structures. A newly developed program, which is based on innovative shaft alignment technologies including nonlinear elastic multi-support bearing concept and hull deflection database approach, has S basic modules : 1)fully automated finite element generation module, 2) hull deflection database and it's mapping module on bearings, 3) squeezing and oil film pressure calculation module, 4) optimization module and 5) gap & sag calculation module. First module can generate finite element model including shafts, bearings, bearing seats, hull and engine housing without any misalignment of nodes. Hull deflection database module has built-in absolute deflection data for various ship types, sizes and loading conditions and imposes the transformed relative deflection data on shafting system. The squeezing of lining material and oil film pressures, which are relatively solved by Hertz contact theory and built-in hydrodynamic engine, can be calculated and visualized by pressure calculation module. One of the most representative capabilities is an optimization module based on both DOE and Hooke-Jeeves algorithm.

A Study on the Measurement and Analysis of Bearing Reaction Forces of Marine Propulsion Shafting System using Strain-Gauge (스트레인 게이지를 이용한 선박용 추진 축계의 베어링 반력 측정에 관한 연구)

  • Kim, Chul-Woo;Lee, Yong-Jin;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Bearing damages by shaft misalignment have frequently been happened in marine ships. Specially. after stern tube bearing damage and failure for large crude oil carriers have been reported several times. However. the bearing reaction of the after stern tube bearing cannot be measured by jack-up test due to the hull structure condition. Therefore, when the jack-up test is used for the bearing reaction measurements, the bearing reaction for the after stern tube bearing obtained from the theoretical calculation method have to be used. In this paper, the shaft alignment on the large oil crude carrier is theoretically calculated and the differences between the calculated and actual installed bearing reaction values are compared. The bearing reactions for forward stern tube bearing and intermediate bearing are calculated by the simple formula using the strain gauge bending moments obtained from the measurements. Their reliability is confirmed by comparing the bearing reactions from jack-up test and the bearing reaction for after stern tube bearing is calculated by the same test. Also, the bearing reactions on the after stern tube bearing, forward stern tube bearing and intermediate shaft bearing under all operating conditions are calculated by using the bending moments obtained from the measurements and it is confirmed that the differences of the bearing reaction for all operating conditions are caused from hull deflection. The results of this study should prove useful for the future projects of the alignment calculation including the hull deflection effectiveness.

A Study on Designing an Effective Support Point for After-Stern Tube Bearings Concerning Shaft Alignment (추진축계 정렬시 선미관 베어링 유효지지점 설정에 관한 연구)

  • Lee, Jae-ung;Kim, Yeonwon;Kim, Jung-Ryul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.803-809
    • /
    • 2018
  • Generally, the gap-and-sag method is used in the shipbuilding stage before coupling the shafts to check whether they are installed at the same position as designed and derived from shaft alignment calculation. The primary installed propeller shaft becomes a reference point, the position of the remaining shafts are sequentially determined through the gap-and-sag value derived from the deflection and deflection angle at each shaft flange by own weight. If the reference point varies against the design value, it would have a series of effects on the installation of the remaining shafts. Moreover, after coupling the shafts, even if the bearing reaction forces derived from measurement are satisfied by the allowable limit range, consequently it might have an adverse effect on the stability of the shafting system by not being able to estimate the relative slope angle between the propeller shaft and the after-stern tube bearing. In this paper, to deal with above-mentioned phenomenon, the theoretical calculations related to designing an effective support point of the aft stern tube bearing and analysis by measurement is conducted through a case of open-up inspections. Based on this, a shaft installation guideline is proposed to minimize the misalignment related to preventing wiping damage of the after-stern tube bearing.

A study on wind load characteristics of wind turbines (풍력발전기의 풍하중특성에 관한 연구)

  • Kim, Jung-Su;Park, Noh-Gill;Kim, Young-Duk;Kim, Su-Hyub
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.124-129
    • /
    • 2010
  • Wind load characteristics is investigated for vibration analysis of wind turbine gearbox. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. A blast wind model is assumed, of which the maximum velocity is located at the center and the velocity profile is normally distributed. The periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train.

  • PDF

An Analytical Investigation on Vibrational Characteristics of Turbo Compressor (터보압축기의 진동 특성에 관한 해석적 연구)

  • 이형우;이동환;박노길
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1069-1077
    • /
    • 1998
  • A dynamic model of turbo compressor having helical gear pairs is developed. The model accounts for the shaft and bearing flexibilities, gyroscopic effects and the force couplings among the transverse, torsion. and axial motions due to gearings. For the mode analysis of turbo compressor, a transfer matrix method is used. The excitation sources caused by the mass unbalances of the rotors and misalignment of the shafts, the transmitted errors of the gearings. and the vane passing frequencies of the Impeller are studied qualitatively. By introducing the perturbation method, the generated forcing frequencies are defined and devided into three groups. With the field data, two critical speeds are analytically found and the corresponding modal characteristics are examined.

  • PDF

Fault Diagnosis of Rotating Machinery Using Multi-class Support Vector Machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • Hwang, Won-Woo;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1233-1240
    • /
    • 2004
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the nitration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

Study on Flow Mixing Effects in a High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 2000
  • Turbulence in journal bearing operation is examined and the thermal variability is studied for isothermal, convective and adiabatic conditions on the walls under aligned and misaligned conditions. Also, the effects of a contraction ratio at the cavitation region and the mixing between re-circulating oil and inlet oil on the fluid field of oil film are included. An algorithm for the solution of the coupled turbulent Reynolds and energy equations is used to examine the effects of the various factors. Heat convection is found to play only a small role in determining friction and load under no mixing condition. However, under realistic mixing condition, the heat convection cannot be ignored. The wall temperature and heat transfer have been found to be of secondary important factors to the mixing effectiveness at the groove and the final mixture temperature.

  • PDF

Diagnosis of rotating machines by utilizing a back propagation neural net

  • Hyun, Byung-Geun;Lee, Yoo;Nam, Kwang-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.522-526
    • /
    • 1994
  • There are great needs for checking machine operation status precisely in the iron and steel plants. Rotating machines such as pumps, compressors, and motors are the most important objects in the plant maintenance. In this paper back-propagation neural network is utilized in diagnosing rotating machines. Like the finger print or the voice print of human, the abnormal vibrations due to axis misalignment, shaft bending, rotor unbalance, bolt loosening, and faults in gear and bearing have their own spectra. Like the pattern recognition technique, characteristic. feature vectors are obtained from the power spectra of vibration signals. Then we apply the characteristic feature vectors to a back propagation neural net for the weight training and pattern recognition.

  • PDF