• Title/Summary/Keyword: Shaft fracture

Search Result 158, Processing Time 0.021 seconds

Anterior Dislocation of the Radial Head Combined with Plastic Deformity of the Ulnar Shaft in an Adult: A Case Report

  • Moon, Sang Won;Kim, Youngbok;Kim, Young-Chang;Kim, Ji-Wan;Yoon, Taiyeon;Kim, Seung-Chul
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • A 25-year-old woman presented to the emergency room with a painful and swollen right forearm. She had just sustained an injury from an accident during which her arm was tightly wound by a rope as she was lowering a net from a fishing boat. Before being released, her arm was rigidly trapped in the rope for approximately ten minutes. Radiographs revealed anterior dislocation of the radial head that was accompanied by plastic deformation of the proximal ulna, manifested as a reversal of the proximal dorsal angulation of the ulna (PUDA); suggested a Monteggia equivalent fracture. With the patient under general anesthesia, we reduced the radial head by posterior compression at $90^{\circ}$ of elbow flexion and at neutral rotation of the forearm. However, the reduction was easily lost and the elbow re-dislocated with even slight supination or extension of the arm. After the osteotomy of the ulnar deformity to restore the PUDA to normal, the reduction remained stable even with manipulation of the arm. We found that the patient could exercise a full range of motion without pain at the 3-month follow-up, and neither residual instability nor degenerative changes were observed at the final 3-year follow-up.

Cement Augmentation of Dynamic Hip Screw to Prevent Screw Cut Out in Osteoporotic Patients with Intertrochanteric Fractures: A Case Series

  • Rai, Avinash Kumar;Goel, Rajesh;Bhatia, Chirag;Singh, Sumer;Thalanki, Srikiran;Gondane, Ashwin
    • Hip & pelvis
    • /
    • v.30 no.4
    • /
    • pp.269-275
    • /
    • 2018
  • Purpose: The purpose of this study is to describe a method of inserting cement in the femoral head before fixation with dynamic hip screw to prevent screw cut out due to osteoporosis and to evaluate its clinical outcome in these patients. Materials and Methods: In this prospective study, 30 patients aged 60 years and older with intertrochanteric fracture were included. Bone mineral density was measured. After reaming of the femoral head and neck with a triple reamer and polymethyl methacrylate, bone cement was introduced into the femoral head using a customized nozzle and a barrel fitted on a cement gun. A Richard screw was inserted and the plate was fixed over the femoral shaft. Patients were mobilized and clinical outcomes were rated using the Salvati and Wilson's scoring system. Results: More patients included in this study were between 66 and 70 years old than any other age group. The most common fracture according to the Orthopaedic Trauma Association classification was type 31A2.2 (46.7%). The T-score was found to be $-2.506{\pm}0.22$ (mean${\pm}$standard deviation); all patients were within the range of -2.0 to -2.8. The duration of radiological union was $13.67{\pm}1.77$ weeks. Salvati and Wilson's scoring at 12 months of follow up was $30.96{\pm}4.97$. The majority of patients were able to perform their normal routine activities; none experienced implant failure or screw cut out. Conclusion: Bone cement augmentation may effectively prevent osteoporosis-related hardware complications like screw cut out in elderly patients experiencing intertrochanteric fractures.

Cut-Through versus Cut-Out: No Easy Way to Predict How Single Lag Screw Design Cephalomedullary Nails Used for Intertrochanteric Hip Fractures Will Fail?

  • Garrett W. Esper;Nina D. Fisher;Utkarsh Anil;Abhishek Ganta;Sanjit R. Konda;Kenneth A. Egol
    • Hip & pelvis
    • /
    • v.35 no.3
    • /
    • pp.175-182
    • /
    • 2023
  • Purpose: This study aims to compare patients in whom fixation failure occurred via cut-out (CO) or cut-through (CT) in order to determine patient factors and radiographic parameters that may be predictive of each mechanism. Materials and Methods: This retrospective cohort study includes 18 patients with intertrochanteric (IT) hip fractures (AO/OTA classification 31A1.3) who underwent treatment using a single lag screw design intramedullary nail in whom fixation failure occurred within one year. All patients were reviewed for demographics and radiographic parameters including tip-to-apex distance (TAD), posteromedial calcar continuity, neck-shaft angle, lateral wall thickness, and others. Patients were grouped into cohorts based on the mechanism of failure, either lag screw CO or CT, and a comparison was performed. Results: No differences in demographics, injury details, fracture classifications, or radiographic parameters were observed between CO/CT cohorts. Of note, a similar rate of post-reduction TAD>25 mm (P=0.936) was observed between groups. A higher rate of DEXA (dual energy X-ray absorptiometry) confirmed osteoporosis (25.0% vs. 60.0%) was observed in the CT group, but without significance. Conclusion: The mechanism of CT failure during intramedullary nail fixation of an IT fracture did not show an association with clinical data including patient demographics, reduction accuracy, or radiographic parameters. As reported in previous biomechanical studies, the main predictive factor for patients in whom early failure might occur via the CT effect mechanism may be related to bone quality; however, conduct of larger studies will be required in order to determine whether there is a difference in bone quality.

Vibration Analysis of Cracked Rotor (균열 회전체의 진동해석)

  • Jun, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.925-934
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterative method. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

  • PDF

A Study on the Process Improvement of Commutator Press Fitting by 6 Sigma Process (6시그마 프로세스를 이용한 정류자(Commutator) 압입 공정개선에 관한 연구)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Yang, Se-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.37-42
    • /
    • 2005
  • Recently $6{\sigma}$ quality control is an most important strategy to many enterprises in order to be a top company in the world, because it is an excellent scientific method to achieve the best quality control for their management and products. SY company is a small and medium one that has the quality problem for a long time such as occurring cracks on the surface of commutator at his assembly line while being assembled a rotor shaft and commutator of DC motor. This research was started to improve this problem by $6{\sigma}$ process, and as the results of this study, first, to find three vital fews, second, to get an achievement of about 21% improvement for the fracture strength of commutator, and third, to be recognized to change into $6{\sigma}$ quality control in SY company.

  • PDF

The Polishing Characteristics and Development of Ultrasonic Polishing System (초음파 폴리싱 시스템의 개발 및 특성)

  • Moon, H.H.;Park, B.G.;Kim, S.C.;Lee, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1014-1020
    • /
    • 2003
  • We have developed the ultrasonic polishing system to get super finishing that consist of machine part that can rotate and travel the main shaft with power 1.5kW, ultrasonic generator with frequency 20kHz. By using this system we were investigated the characteristics of ultrasonic polishing and deduced the major facters which affect the surface roughness by the experimental plans for three different materials such as ceramic, glass, and wafer, and so could be obtained following results. We could be obtained the excellent surface for hard-to-difficult cutting materials. The rotating speed could be found to be major factor influencing the surface roughness. In the case of ceramic and wafer, we were able to obtain good surface roughness when the feed rate and ultrasonic output is higher. In the case of glass, the surface roughness becames worse when ultrasonic output is higher because of increasing of load affacting on the particles in slurry.

  • PDF

Vibration Analysis of Flexible Rotor Having a Breathing Crack (개폐균열이 존재하는 유연 회전체의 진동해석)

  • Jun, Oh-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1137-1147
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack Position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterativemethod. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

Cupping Therapy Combined with Rehabilitation for the Treatment of Radial Palsy: a Case Report

  • Benli, Ali Ramazan;Senay, Demir Yazici;Koroglu, Mustafa;Mutlu, Tansel;Erturhan, Selman;Ogun, Muhammet Nur;Sunay, Didem
    • Journal of Acupuncture Research
    • /
    • v.35 no.1
    • /
    • pp.1-3
    • /
    • 2018
  • This case report demonstrates the beneficial effects of cupping therapy (CT) in a 35-year-old man who is diagnosed with a fracture of the radial shaft due to a motorcycle accident. One year after the treatment started, pseudoarthrosis developed in the radius and an autogenous iliac bone graft was performed. However, extension dysfunction in the wrist became evident. After another 6 months of physical therapy and rehabilitation, no improvements were observed. Therefore, CT and adjunctive electrostimulation were performed, after 30 days of treatment, marked recovery of muscle function and full wrist extension were observed, as determined by electromyography and a grade 5/5 on the Medical Research Council power of wrist extension scale. The results in this case study suggest that CT in conjunction with adjunctive electrostimulation, may accelerate functional recovery from postoperative radial palsy, and provide a useful alternative treatment in this situation.

Serologic Markers of Excessive Callus formation in Traumatic Brain Injury Patient (다발성 환자에서 뇌 손상이 동반된 장골 골절 시 가골 형성 촉진예측을 위한 혈액검사에 대한 고찰)

  • Park, Hee-Gon;Kim, Yeon-Jun
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.81-88
    • /
    • 2013
  • Purpose: Among patients with multiple traumatic fractures, a tendency to form more callus exists in groups with multiple fractures combined with traumatic brain injury. This retrospective study evaluated the hematologic factors that might be useful to predict callus formation by comparing serologic tests and clinical and radiologic results in two groups. Methods: From January 2000 to December 2010, patients with femur shaft fractures were divided in two groups: one without traumatic brain injury (control group: 32 cases), and the other with traumatic brain injury (study group: 44 cases). We evaluated routine serologic exams and the amount of callus formation during the follow-up period. Results: Only the alkaline phosphatase level was statistically different between the two groups, not the White blood cell count, C-reactive protein, total calcium, and lactate dehydrogenase level. The amount of callus formation on the antero-posterior radiograph at the last follow up period was 74.9% in the study group and 42.1% in the control group. Then lateral radiograph showed 73.2% callus formation rate in the study group and 31.8% in the control group. Conclusion: In routine serologic exams, the two groups had no significant differences, except for the alkaline phosphatase level. The group with traumatic brain injury had much more callus formation, but there was no reliable factor to predict callus formation on the routine serologic exam.

Fretting Fatigue Behavior of High Strength Aluminum Alloys (고강도 알루미늄 합금의 프레팅 피로거동)

  • Choi, Sung-Jong;Lee, Hak-Sun;Lee, Cheol-Jae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.197-204
    • /
    • 2007
  • Fretting is a contact damage process that occurs between two contact surfaces. Fretting fatigue reduces fatigue strength of the material due to low amplitude oscillatory sliding and changes in the contact surfaces of strongly connected machine and structure such as bolt, key, pin, fixed rivet and connected shaft, which have relative slip of repeatedly extreme low frequency amplitude. In this research, the fretting fatigue behavior of 2024-T3511 and 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were experimentally estimated. Based on this experimental wort the following results were obtained: (1) A significant decrease of fatigue lift was observed in the fretting fatigue compared to the plain fatigue. The fatigue limit of 2024-T3511 aluminum alloy decreased about 59% while 7050-T7451 aluminum alloy decreased about 75%. (2) In 7050-T7451 specimen using ATSI4030 contact pad, crack was initiated more early stage than using 2024-T3511 contact pad. (3) In all specimens, oblique cracks were initiated at contact edge. (4) Tire tracks and rubbed scars were observed in the oblique crack region of fracture surface.