• 제목/요약/키워드: Shaft Length

검색결과 184건 처리시간 0.023초

기계 시스템의 길이제원 결정과정에 관한 연구 (A Study on the Decision Process of the Length Dimension of a Mechanical System)

  • 천길정;이정한;한동철
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.800-808
    • /
    • 1997
  • Decision process for length dimension in the mechanical system design process has been studied with a washing machine transmission as a model. The results are, (i) the length dimensions of the non-shaft elements are independent of other elements, (ii) the length dimensions of the shaft elements are dependent on the dimensions of the non-shaft elements located inside and outside of that elements, (iii) the length dimensions of the inner shaft elements are dependent on those of the outer shaft elements located parallel, (iv) the length dimensions of the shaft elements located serial are independent of each other.

골프 드라이버 샤프트의 가변성이 타구속도, 헤드스피드 및 비거리에 미치는 영향 (Golf driver shaft variability on ball speed, head speed and fly distance)

  • 정철;박우영
    • 한국응용과학기술학회지
    • /
    • 제35권1호
    • /
    • pp.273-283
    • /
    • 2018
  • 이 연구의 목적은 골프드라이버 샤프트의 가변성이 타구속도, 헤드스피드 및 비거리에 미치는 영향을 분석하고자 하였다. 이 연구에 참여한 피검자는 핸디캡이 0인 남자 프로골퍼 10명과 핸디캡이 18인 남자 아마추어 골퍼 10명으로 하였다. 클럽의 종류는 1번 드라이버로 한정하였고, 각기 다른 스팩의 24개 드라이버를 가지고 실시하였다. 종속변인으로는 타구속도, 비거리 및 헤드스피드로 하였다. 연구 결과 다음과 같은 결과를 얻었다. 첫째, CPM에 따라 유의한 차이가 나는 것으로 밝혀졌고, 사후검증 후 230< 이상일 때 타구속도, 비거리 및 헤드스피드에서 최적의 수행력을 보였다. 둘째, 샤프트길이에 따른 타구속도 및 비거리는 유의한 차이가 나는 것으로 나타났고, 사후검증 후 타구속도 및 헤드스피드는 46inch에서 비거리는 45inch에서 최적의 수행력을 보였다. 셋째, 샤프트 무게에 따른 변인 간 차이는 나지 않았고, 사후검증 후 샤프트 무게가 65g일 때 타구속도와 비거리에서 최적의 수행력을 보였고, 50g일 때 헤드스피드에서 최적을 보였다. 또한 프로와 아마추어 간에는 변인에서 유의한 차이가 나는 것으로 나타났다. 결론적으로 최적의 드라이버는 CPM이 230<, 샤프트길이 46inch, 샤프트 무게가 65g 샤프트 일 때 최고의 수행력을 발휘하는 것으로 판명되었다.

꼭지점계획법을 이용한 주축 치수 결정에 관한 연구 (A Study on the Determination of Shaft Size Using the Extreme Vertices Design)

  • 황영국;이춘만
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.214-220
    • /
    • 2009
  • The spindle is the main component in machine tools. The static and dynamic stiffness of the spindle directly affect the machining productivity and surface integrity of the workpiece. The static and dynamic stiffness of the spindle depend on the shaft size, bearing arrangement, bearing span length, and so on. Therefore, the selection of shaft size and bearing span length are important to improve the spindle stiffness. This paper presents the determination of shaft size and bearing span length in spindle design step. In order to select the optimal bearing and built-in motor locations with constraint conditions, the extreme vertices design was applied. The results show that extreme vertices design is usable for spindle design with design constraints.

복합재료 동력전달축의 접착조인트 설계 (Design of Adhesive Joints for Composite Propeller Shafts)

  • 김진국;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.149-153
    • /
    • 2000
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece propeller shafts composed of carbonfepoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesively bonded joint was employed to join the composite shaft and the aluminum yoke. For the optimal adhesive joining of the composite propeller shaft to the aluminum yoke, the torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element method and compared with the experimental result. Then an optimal design method was proposed based on the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and FEM analyses, it was found that the static torque transmission capability of composite propeller shaft was maximum at the critical yoke thickness, and it saturated beyond the critical length. Also, it was found that the one-piece composite propeller shaft had 40% weight saving effect compared with a two-piece steel propeller shaft.

  • PDF

대심도 부산점토에 적용된 종저말뚝(Belled Shaft foundation)의 수치해석 연구 (Numerical Analysis of Belled Shaft Foundation in Thick Pusan Clays)

  • Rao, K.G.
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.530-535
    • /
    • 2006
  • The Pusan clays are soft and thick deposits and in some places, they reach even up to 50-70m. So, the pile foundations are inevitable in almost all cases. But they are significantly expansive when the length of the pile reaches about 70m. In this study, a comprehensive parametric study has been carried out in order to reduce the pile length and number of piles required in turn the cost of the foundation for particular building. A belled shaft pile has been optimized for a typical soil profile using the PLAXIS (FEM code). These results have shown a new direction of the pile foundation in Pusan, Korea. The results including the variation of contact pressures at the bottom of the bell, optimization of the angle of the bell and height of the bell in terms of the diameter of the shaft. And also, the design curves have been generated so that they can be directly used for design of belled shaft foundations. However, the structural strength criterion is being checked in the concerned laboratory.

  • PDF

Experimental study on axial response of different pile materials in organic soil

  • Canakci, Hanifi;Hamed, Majid
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.899-917
    • /
    • 2017
  • Sixty four tests were performed in a steel tank to investigate the axial responses of piles driven into organic soil prepared at two different densities using a drop hammer. Four different pile materials were used: wood, steel, smooth concrete, and rough concrete, with different length to diameter ratios. The results of the load tests showed that the shaft load capacity of rough concrete piles continuously increased with pile settlement. In contrast, the others pile types reached the ultimate shaft resistance at a settlement equal to about 10% of the pile diameter. The ratios of base to shaft capacities of the piles were found to vary with the length to diameter ratio, surface roughness, and the density of the organic soil. The ultimate unit shaft resistance of the rough concrete pile was always greater than that of other piles irrespective of soil condition and pile length. However, the ultimate base resistance of all piles was approximately close to each other.

축-베어링 시스템의 연성 특성을 고려한 볼 베어링의 선정 (Ball-Bearing Selection Considering Flexibility of Shaft-Bearing System)

  • 윤기찬;최동훈
    • Tribology and Lubricants
    • /
    • 제16권1호
    • /
    • pp.39-45
    • /
    • 2000
  • In this paper, the effects of shaft and bearing flexibilities are investigated for the accurate modeling of a shaft-bearing system supported by ball bearings. Generally, rolling bearings are modeled by simple rigid pin-joint in the mechanical design. However, they can no longer be modeled by ideal boundary conditions in the advanced applications because the rigid pin-joint model cannot satisfy the current trends of mechanical design decreasing mass and reducing volume. Consequently the flexible support model of ball bearing is investigated using the static analysis module developed by A .B. Jones and T. A. Harris. A simple two-bearing system, supported by two deep groove ball bearings and radially loaded on the shaft midway between the bearings, is utilized to validate the coupled model of shaft-bearing system. Numerical computations using the model indicate that the shaft span length, locating/floating bearing arrangements and applied bearing size are significant factors in determining the mechanical behaviors. The flexible support model of ball bearing can be escaped to over-estimate in the bearing fatigue life. The proposed simple design formulation obtained by numerical simulations can approximately predict a rate of bearing life reduction as a function of shaft span length/shaft diameter (L/d).

열박음축의 고유진동수에 關한 硏究 (A Study on Natural Frequency of Shrink Fit Shaft)

  • 유은열;오재응;임동규
    • 한국음향학회지
    • /
    • 제9권2호
    • /
    • pp.14-24
    • /
    • 1990
  • 본 논문에서는 열박음 부분을 모델링하여 그 부분에서의 단위길이당 스프링강성을 산정한다음 전달매트릭스를 구하였다. 여기에 MYKLESTAD 방법을 토대로 하여 축의 전달매트릭스를 구하였다. 열박음축에 대해서는 수축공차에 따른 고유진동수를 구하였으며, 열박음효과의 효율성을 위하여 똑같은 크기의 열박음 하지 않은 축과 비교검토 하였으며 이를 실험으로 검토하였다. 연구결과 수축공자가 커지면 커질수록 단위길이당 스프링강성은 증가 하였고 고유진동수도 증가하였다. 그리고 열박음축은 열박음 하지 않은 축보다 고유진동수가 감소하였다.

  • PDF

회전샤프트의 위험속도에 관한 진동특성 연구 (A Study on the Vibration Characteristics of Critical Speed for Rotor Shaft)

  • 손충렬;이강수;류영현
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.961-971
    • /
    • 2008
  • In the design of a rotor shaft, care should be taken to minimize vibration by taking into account the sources of vibration. In addition, the intensity critical speed, stability, and other related aspects of the system must be considered. especially when it is operated at a critical speed, it is important to address issues related to vibration, as an increase in the whirling response of the rotor shaft can cause damage to the shaft, destruction of the rotor parts, and detrimental abrasions on the bearings. In this thesis, the vibration characteristics of a rotor shaft are investigated through the use of the finite element method. Variations of the diameters and lengths were used to determine the effect of a rotor shaft using Beam No.188(3D linear strain beam) in ANSYS version 11.0 as a universal interpretation program for finite elements. Special care was taken to prevent excessive vibration, which can result from resonance at the initial stage, in the formulation of a dynamic design for a rotor shaft through calculations while changing the diameters and the lengths of the shaft. Moreover, the dynamic characteristics of the critical speed, total mass, D/L(diameter to length) ratio, and natural frequency were verified. Furthermore, the rotor shaft applied by bearing element was calculated and compared by using Combi No. 214(2-D spring-damper bearing).

지반조건이 현장 타설 말뚝 선단부의 동적 경계조건에 미치는 영향 (Effects of Soil Conditions on the Vibratory Motion of Drilled Shaft)

  • 이병식;이원구
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.159-166
    • /
    • 2000
  • Non-destructive out-hole tests, impact-echo and impact-response are widely applied to evaluate integrity of drilled shafts. In these tests, vibratory motions of drilled shafts are interpreted, which induced by impacts on the shaft head. In applying the tests to evaluating integrity of shaft, it has been attended whether the tests have resolutions enough to distinguish existence of slime at between the shaft end and a bearing soil deposit. To distinguish existence of slime by tests, modes of shaft vibrations need to be reasonably interpreted, which generally vary according to a shaft boundary condition such as, a free-free or a free-fixed condition. The boundary condition of a shaft is, however, found to be significantly affected by stiffness of soil deposits around shaft as well as penetration depths of shaft into a bearing soil deposit. Thus, these effects on the boundary condition of a shaft should be considered reasonably in interpreting test results to decide the existence of slime. To investigate the effects, in this study, vibratory motions of shafts constructed in various soil conditions and end penetration depths are examined analytically. Based on the studies, variations of boundary condition are characterized in terms of soil stiffness contrast between a shaft perimeter and a shaft end, and also the ratio of a penetration depth to a shaft length. The results can be applied to verify the applicability of tests to identify the slime.

  • PDF