• 제목/요약/키워드: Shading device

검색결과 62건 처리시간 0.025초

사무소 건물의 외피요소가 냉난방 및 조명에너지 소비에 미치는 영향에 관한 연구 (A Study on the Effect of Envelope Factors on Cooling, Heating and Lighting Energy Consumption in Office Building)

  • 손장희;양인호
    • 조명전기설비학회논문지
    • /
    • 제26권2호
    • /
    • pp.8-17
    • /
    • 2012
  • The objective of this study is to perform an analysis of the heat(heating and cooling) and lighting energy consumption according to the window area ratio and the application of horizontal louver, which is external shading device installed for the purpose of energy savings in office buildings. For this, a building was chosen as a typical example, and the heat and lighting energy consumption was calculated by using the daylight and building energy analysis simulation. The results showed that the total energy consumption, when the lighting control was applied, was reduced by an average of 11.49[%] compared to when there was no lighting control. The smaller the glazing ratio is, the less the total energy consumption is. Also, the application of the horizontal louver increases the total energy consumption under the same condition of glazing ratio.

환경친화적인 리노베이션 기법을 적용한 폐교의 재활용 - 폐교를 이용한 복합 예술작업공간 설계 - (Renovation of Closed School Using Sustainable Method - From Closed School to Artist Studio Complex -)

  • 홍승신;이선영
    • 교육시설
    • /
    • 제9권4호
    • /
    • pp.95-102
    • /
    • 2002
  • The purpose of this study is to renovate a closed school to a artist studio complex applying sustainable principles and methods. Through the case study, the principle and methods of sustainable renovation is investigated and following strategies are extracted as a frame of renovation. First, atrium space with thermal mass using existing wall is proposed as a public gathering space. Second, light shelves for effective lighting and shading device for protecting and allowing sun light is proposed to renovate existing classroom. Third, double skin system is proposed with reflection pool to activate heating and ventilation for passive solar as well as passive cooling. Finally, simulation programs such as energy-10 and Form-Z is used to confirm the validity of the sustainable design.

창호일체형 광선반 시스템 채광성능 평가 (Daylighting Performance Evaluation of window Integrated Light Shelf System)

  • 정유근
    • KIEAE Journal
    • /
    • 제7권5호
    • /
    • pp.41-46
    • /
    • 2007
  • The lightshelf system, a horizontal shading and light redirect device, should improve the visual environment by optimal light distributions and intense illumination levels of a interior. This study aims to evaluate the daylighting performance of window integrated lightshelf systems by computer simulations. For the study, the standard office plan is analyzed through the field surveys. And then, the various lightshelf types attached window systems are picked out from existed research results. The max, minimum and average illuminance levels of interiors and illuminance distributions are evaluated by Lightsacpe 3.2 programs based on the installing height, shape type and moving angle of lightshelfs. As results, it is suggested that the optimum lightshelf shapes are the height 1.8m and the width 600mm. Also, in mixed lightshelf, the outside width 600mm, inside width 400 are efficient on indoor daylighting performance.

건물 차양을 위한 RF제어 시스템 제작에 관한 연구 (A Study of Fabrication of RF Control System for Building Sunshade)

  • 박정철;추순남
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.149-157
    • /
    • 2014
  • 본 논문은 건물 차양을 위한 RF 제어 시스템 제작에 관한 연구이다. 저전력, 저전압 UHF 무선 송 수신 칩인 CC1020을 사용하여 주파수 447.8625~447.9875, Data rate 4800Baud, Channel spacing 12.5kHz, SPDT 스위치로 입출력 분리하여 설계하여 Microcontroller 프로그램 하였다. 안테나는 나선형 Helical 안테나 형태로 제작하였다. 시작 제품을 주파수 447.8625~447.9875 무선 공중선 전력을 측정하여 실험한 결과 소출력 무선기기 기준인 10dBm을 넘지 않았다. 차양 효과 실험은 차양을 25%, 50%, 75% 위치에서 실내 온도 및 조도를 1시간 단위로 측정하였다. 실험결과 25% 위치시 조도는 82~87%로 낮아지고, 온도는 $0.6{\sim}1.4^{\circ}C$ 낮아졌으며, 50% 위치시 조도는 60~68%로 낮아지고, 온도는 $2.3{\sim}4.1^{\circ}C$ 낮아졌다. 75% 위치시 조도는 41~47% 낮아지고, 온도는 $3.4{\sim}5.1^{\circ}C$가 낮아졌다.

주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구 (Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System)

  • 윤종호;한규복;안영섭
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

Effect of Flashing Light on Oxygen Production Rates in High-Density Algal Cultures

  • Park, Kyong-Hee;Kim, Dong-Il;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.817-822
    • /
    • 2000
  • A proper flashing light is expected to enhance microalgal biomass productivity and photosynthetic efficiency. The effect of flashing light on high-density Chlorella kessleri (UTEX 398) cultures was studied using light-emitting diodes. A frequency modulator was designed to flash LEDs, and the device successfully provided wide range of frequencies and various duty cycles of flashing. A relatively high frequencies of 10, 20 and 50 kHz were used in this study. These frequencies have very short flashing time ($2-50{\mu}s$), which corresponded to the time constant of the light reaction of photosynthesis. The specific oxygen production rates of photosynthesis under flashing light were compared with those under an equivalent continuous light in specially designed illumination cuvette. The specific oxygen production rates under flashing light were 5-25% higher than those under the continuous light. A range of cell concentration was discovered, where the benefit of flashing light was maximized. The photosynthetic efficiency was also higher under flashing light with frequencies of over 1 kHz, which was a clear indication of flashing light effect and the degree of mutual shading could by overcome by flashing lights, particularly at high-density algal cultures.

  • PDF

공동주택단지에서의 태양에너지 시스템 적용에 관한 연구 (A Study on the Application of Solar Energy System in Apartment Complex)

  • 정선미;정민희;박진철;이언구
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.43-48
    • /
    • 2009
  • In this study, through case studies, solar energy systems were coordinated with architectural plan elements and the others in apartment complex, and the energy performance was evaluated quantitatively through computer simulation PVSYST and RETScreen. As a results, in plan process of the application of solar energy systems in apartment complex, solar energy system should be considered as not only energy reducing technical element but also part of architectural plan element. And it must be considered with architectural plan elements, composition methods, energy storage methods, technical elements from the early basic plan stage. Photovoltaic system was installed on the wall facing the south and rooftop. The energy ratio of electric load was shown to be 5.5%. The result showed 7.2% when adding it to shading device additionally, and 6.4% in case of putting extra translucent module on windows. Active solar collecting system was applied on roof with the angle of 45. Maximum number of solar collector was 10 in a row, and the total solar collecting area was $915.00m^2$. The energy ratio of domestic water heating load by active solar hot water system is shown to be 11.4%.

  • PDF

Study on Integrated Workflow for Designing Sustainable Tall Building - With Parametric method using Rhino Grasshopper and DIVA for Daylight Optimization

  • Kim, Hyeong-ill
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.21-28
    • /
    • 2016
  • Purpose: The Objective of this study is to explore the capabilities of an integrated modelling and simulation workflow when applied to an experiment-based research process, aimed at deriving daylight optimization strategies specific to tall buildings. Methods: Two methods were devised to apply this workflow with the help of DIVA and Rhino/Grasshopper. The first method is a multiple variant analysis by setting up an appropriate base case and analysing its daylight and energy performance, forming the basis of comparison for subsequent cases for design variants. The second method involved setting up the base case within a site context and conducting a solar irradiation study. An architectural variables such as overhang and shading device, were then defined as inputs in the parametric definition in Grasshopper to control the selected variable. Results: While the first method took advantage of the speed and efficiency of the integrated workflow, the second method was derived based on the ability to directly process simulation data within the integrated, single-software platform of the proposed workflow. Through these methods, different architectural strategies were explored, both to increase daylight penetration and to reduce radiant heat gain. The focus is on methods by which this workflow can be applied to facilitate the experimental derivation of daylight optimization strategies that are specific to tall building design.

건물에너지 저감을 위한 향별 슬랫형 블라인드의 최적각도 제어 알고리즘 산출 (Optimized slat angle control algorithm prediction of venetian blind depending on window orientation for energy saving)

  • 권혁주;이금호;이광호
    • KIEAE Journal
    • /
    • 제17권3호
    • /
    • pp.99-106
    • /
    • 2017
  • Purpose: Most modern office buildings adopt the curtain wall system in order to provide occupants with the sense of openness and high-technology, which requires large window area. As a result, the amount of solar radiation increases, negatively affecting cooling load during the summer and increasing energy costs. However, the performance of window itself is not sufficiently controllable parameter to control thermal comfort and solar radiation. Therefore, a shading device such as venetian blind is required to control them and thus a variety of studies have been performed thus far. So, the purpose of this study is to improve the performance of blind through the development of blind control algorithm. Method: Among various input variables for the control of venetian blinds, the vertical solar radiation has been selected in this study as the primary input variable and the optimal control algorithm for venetian blinds were developed for each window orientation. Result: The developed optimal control algorithm has a positive effect on building energy savings.

재실자 방해 최소화를 위한 자동 블라인드 제어 방안 (Automated Blind Control Strategy to Minimize Occupant's Distractions)

  • 구소영;여명석;성윤복;김광우
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.84-92
    • /
    • 2013
  • Blinds are a common type of shading device and are increasingly operated automatically to overcome the limitations of manual operation. Automated blinds need to be controlled to maximize benefits of daylight in the point of occupant comfort and energy consumption. However, the previous control methods could cause occupant's distractions by the undesirable control time interval and amount of blind movement. A few researches suggested the control concept for minimizing occupant's distractions by automatic blind control, but they did not provide optimal control algorithm to be useful in practice. In this paper, we propose an optimal control algorithm for automated blinds that can maximize not only visual comfort but also sunlight penetration into buildings based on occupants' preferences on blind movement and sunlight. The proposed control algorithm can prevent solar glare on workplane and minimize occupant's distractions to maximize occupants' visual comfort.