• Title/Summary/Keyword: Sewer network

Search Result 113, Processing Time 0.027 seconds

Method to Determinate Monitoring Points in Sewer Networks (하수관망 내 모니터링 지점 선정 기법)

  • Lee, Jung-Ho;Jun, Hwan-Don;Park, Moo-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • In order to manage a sewer system effectively, flow conditions such as flux, water quality, Infiltration and Inflow (I/I), Combined Sewer Overflows (CSOs), etc need to be monitored on a regular base. Therefore, in sewer networks, a monitoring is so important to prevent the river disaster. Monitoring all nodes of an entire sewer system is not necessary and cost-prohibitive. Water quality monitoring points that can represent a sewer system should be selected in a economical manner. There is no a standard for the selection of monitoring points and the quantitative analysis of the observed data has not been applied in sewer system. In this study, the entropy method was applied for a sewer network to evaluate and determine the optimal water quality monitoring points using genetic algorithm. The entropy method allows to analyze the observed data for the pattern and magnitude of temporal water quality change. Since water quality measurement usually accompanies with flow measurement, a set of installation locations of flowmeters was chosen as decision variables in this study.

A Study on Design and Implementation of Web Sewer Based on Sensor Network Using Tiny-DB (Tiny-DB를 응용한 센서 네트워크 기반의 Web Sewer 설계 및 구현에 관한 연구)

  • Lee Sang-Hoon;Moon Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.460-462
    • /
    • 2005
  • 센서 네트워크 노드는 각각 초저전력, 초소형, 저비용을 지향하는데 이러한 하드웨어 리소스를 사용하는 임베디드 OS가 TinyOS이다. TinyDB는 이러한 TinyOS 센서 네트워크로부터 정보를 추출하기 위한 쿼리프로세싱 시스템이다. 이러한 TinyDB를 활용해서 X-Scale 기반의 임베디드 리눅스 환경에서 네트워크를 통한 Host서버와의 연계 및 센서 네트워크 응용에 관한 연구를 하였다.

  • PDF

Estimation of Water Quality Variation in Sewer Network using MOUSE TRAP Model (MOUSE TRAP 모델을 이용한 하수관거내 수질변화 예측)

  • Yang, Hae Jin;Jun, Hang Bae;Son, Dae Ik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.743-752
    • /
    • 2009
  • One of the major problems associated with operation of domestic sewer lines involves hydraulic problems such as insufficient conveyance capacity, exceeding maximum velocity, and deficiency of minimum velocity. It has also been pointed out that influent concentration lower than design concentration of pollutants, which is mainly caused by unidentified inflow and infiltration, degrades the operational efficiency of many sewage treatment plants (STPs). A computer-added analysis method supporting a coupled simulation of sewage quality and quantity is essentially required to evaluate the status of existing STPs and to improve their efficiency by a proper sewer rehabilitation work. In this study, dynamic water quality simulations were conducted using MOUSE TRAP to investigate the principal parameters that governs the changes of BOD, ${NH_4}^+$, and ${PO_4}^{3-}$3- concentrations within the sewer networks based on data acquired through on-site and laboratory measurements. The BOD, ${NH_4}^+$ and ${PO_4}^{3-}$3- concentrations estimated by MOUSE TRAP was lower than theoretical pollution loads because of sedimentation and decomposition in the sewer. The results revealed that sedimentation is a most important factor than other biological reactions in decreasing pollutant load in the sewers of C-city. The sensitivity analysis of parameters pertaining to water quality changes indicated that the effect of the BOD decay rate, the initial DO concentration, the half-saturation coefficient of dissolved BOD, and the initial sediment depth is marginal. However, the influence of settling rate and temperature is relatively high because sedimentation and precipitation, rather than biological degradation, are dominant processes that affect water quality in the study sewer systems.

Effect of the Simplification and Composition in Sewer Networks (우수관망의 단순화와 관로배치의 영향분석)

  • 전병호;이종태;윤재영
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.139-146
    • /
    • 1994
  • Simplified sewer networks have been used to simulate runoff hydrographs for urban watersheds since configurations of sewer networks in urban area are commonly so complex that it is too cumbersome to simulate them as what they are. If they were to be simulated without any simplification, it is not likely that satisfactory results are obtained due to accumulation of numerous little errors. Even for the well-known models widely used in everyday practicesit is not appropriate to simulate everything in the watershed as what they are. In resolving these problems, it is common practice to simplify network configurations so as to be fitted to the models for runoff hydrograph simulation. In case of netwrok simplication, hydraulic and hydrologic characteristics of the watersheds should be carefully taken into consideration to derive meaningful results. On the bases of these considerations, this study analyzes simulation outputs using simplified networks and compares them, as well as inestigates the methods to make hydraulically sound simplification of sewer networks.

  • PDF

Synthetic storm sewer network for complex drainage system as used for urban flood simulation

  • Dasallas, Lea;An, Hyunuk;Lee, Seungsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.142-142
    • /
    • 2021
  • An arbitrary representation of an urban drainage sewer system was devised using a geographic information system (GIS) tool in order to calculate the surface and subsurface flow interaction for simulating urban flood. The proposed methodology is a mean to supplement the unavailability of systematized drainage system using high-resolution digital elevation(DEM) data in under-developed countries. A modified DEM was also developed to represent the flood propagation through buildings and road system from digital surface models (DSM) and barely visible streams in digital terrain models (DTM). The manhole, sewer pipe and storm drain parameters are obtained through field validation and followed the guidelines from the Plumbing law of the Philippines. The flow discharge from surface to the devised sewer pipes through the storm drains are calculated. The resulting flood simulation using the modified DEM was validated using the observed flood inundation during a rainfall event. The proposed methodology for constructing a hypothetical drainage system allows parameter adjustments such as size, elevation, location, slope, etc. which permits the flood depth prediction for variable factors the Plumbing law. The research can therefore be employed to simulate urban flood forecasts that can be utilized from traffic advisories to early warning procedures during extreme rainfall events.

  • PDF

An Effective Shared-Slate Management using Network Delay Estimation in Client-Sewer-Based Networked Virtual Environment (클라이언트-서버기반 분산가상환경에서의 지연예측을 통한 효율적 공유상태관리)

  • 심광현;최병태;김종성;오원근
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.189-192
    • /
    • 2000
  • This paper presents a new DR(Dead Reckoning) algorithm in client-server-based networked virtual environment using network delay estimation. In the algorithm, a new update packet is sent to server (or client) whenever the difference of current real value and tracking value after network delay is larger than threshold. To confirm the proposed algorithm, a test network game was implemented. Through iterative field tests, we knew that this algorithm provides fair service and stability.

  • PDF

Integrated Application of Stormwater Network Analysis Model and Surfacewater Inundation Analysis Model (우수관망 해석모형과 지표수 침수해석 모형의 연계 적용)

  • Shin, Eun Taek;Lee, Sangeun;Eum, Tae Soo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.78-83
    • /
    • 2018
  • Recently, due to the rapid industrialization and urbanization, a great number of infrastructure and population were concentrated in urban areas. These changes have resulted in unprecedent runoff characteristics in urban basins, and the increase in impermeable areas leads to the growth of the runoff and the peak flow rate. Although many cities have made a lot of efforts to check and expand the stormwater network, the flash flood or the local torrential rain caused a growing number of casualty and property damage. This study analyzed the stormwater passage rate in a target area using SWMM. By incorporating the flow quantity surpassing the storm sewer capacity, a 2D inland flooding analysis model was applied to route the inundated area and velocity.

Capacity Expansion Modeling of Water-distribution Network using GIS, VE, and LCC (GIS와 VE, LCC 개념에 의한 동적 상수도관망 대안 결정)

  • Kim, Hyeng-Bok
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.21-25
    • /
    • 1999
  • Planning support systems(PSS) add more advanced spatial analysis functions than Geographic information systems(GIS) and intertemporal functions to the functions of spatial decision support systems(SDSS). This paper reports the continuing development of a PSS providing a framework that facilitates urban planners and civil engineers in conducting coherent deliberations about planning, design and operation & maintenance(O&M) of water-distribution networks for urban growth management. The PSS using dynamic optimization model, modeling-to-generate-alternatives, value engineering(VE) and life-cycle cost(LCC) can generate network alternatives in consideration of initial cost and O&H cost. Users can define alternatives by the direct manipulation of networks or by the manipulation of parameters in the models. The water-distribution network analysis model evaluates the performance of the user-defined alternatives. The PSS can be extended to include the functions of generating sewer network alternatives, combining water-distribution and sewer networks, eventually the function of planning, design and O&H of housing sites. Capacity expansion by the dynamic water-distribution network optimization model using MINLP includes three advantages over capacity expansion using optimal control theory(Kim and Hopkins 1996): 1) finds expansion alternatives including future capacity expansion times, sizes, locations, and pipe types of a water-distribution network provided, 2) has the capabilities to do the capacity expansion of each link spatially and intertemporally, and 3) requires less interaction between models. The modeling using MINLP is limited in addressing the relationship between cost, price, and demand, which the optimal control approach can consider. Strictly speaking, the construction and O&M costs of water-distribution networks influence the price charged for the served water, which in turn influence the. This limitation can be justified in rather small area because price per unit water in the area must be same as that of neighboring area, i.e., the price is determined administratively. Planners and engineers can put emphasis on capacity expansion without consideration of the relationship between cost, price, and demand.

  • PDF

Optimal Designs of Urban Watershed Boundary and Sewer Networks to Reduce Peak Outflows (첨두유출량 저감을 위한 도시유역 경계 및 우수관망 최적 설계)

  • Lee, Jung-Ho;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.157-161
    • /
    • 2011
  • Although many researches have been carried out concerning the watershed division in natural areas, it has not been researched for the urban watershed division. If the boundary between two urban areas is indistinct because no natural distinction or no administrative division is between the areas, the boundary between the urban areas that have the different outlets (multi-outlet urban watershed) is determined by only designer of sewer system. The suggested urban watershed division model (UWDM) determines the watershed boundary to reduce simultaneously the peak outflows at the outlets of each watershed. Then, the UWDM determines the sewer network to reduce the peak outflow at outlet by determining the pipe connecting directions between the manholes that have the multi-possible pipe connecting directions. In the UWDM, because the modification of the sewer network changes the superposition effect of the runoff hydrographs in sewer pipes, the optimal sewer layout can reduce the peak outflow at outlet, as much as the superposition effects of the hydrographs are reduced. Therefore, the UWDM can optimize the watershed distinction in multi-outlet urban watershed by determining the connecting directions of the boundary-manholes using the genetic algorithm. The suggested model was applied to a multi-outlet urban watershed of 50.3ha, Seoul, Korea, and the watershed division of this model, the peak outflows at two outlets were decreased by approximately 15% for the design rainfall.