• 제목/요약/키워드: Severe Shear Deformation

검색결과 51건 처리시간 0.016초

Groove Pressing 공정을 통한 소성 변형 거동 연구 (Analysis of Plastic Deformation Behavior during Groove pressing)

  • 윤승채;;;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.425-426
    • /
    • 2008
  • Elasto-plastic finite element analysis was carried out for analyzing the severe plastic deformation behavior of copper specimens during groove pressing. Deformation localization was studied in terms of strain variations along the longitudinal direction. Plastic strain is lower at the local interface between the shear and the flat regions, which receive very little shear during the pressing cycle. Strain localization is more intensified with the number of rove pressing cycles, although the average strain level increases.

  • PDF

새로운 강소성 가공 공정으로서 Half Channel Angular Extrusion(HCAE)의 유한요소해석 (Finite Element Analysis of Half Channel Angular Extrusion (HCAE) as a New Severe Plastic Deformation Process)

  • 김경진
    • 소성∙가공
    • /
    • 제21권3호
    • /
    • pp.164-171
    • /
    • 2012
  • This paper focuses on the development of a new SPD (severe plastic deformation) process named HCAE (half channel angular extrusion). HCAE technology is based on principled similar to ECAE, but imposes a larger amount and more effective plastic deformation on materials. The amount of shear deformation can be altered by varying the process parameters. Finite element analyses of HCAE were conducted in order to investigate the characteristics of deformation during HCAE and the simulated results show that the predicted value of imposed plastic strain in a single pass reaches 2.5.

연속 회전 등통로각압축 공정의 유한요소해석 (Finite Element Analysis of Continuous Rotary-Die Equal Channel Angular Pressing)

  • 윤승채;서민홍;김형섭
    • 소성∙가공
    • /
    • 제15권7호
    • /
    • pp.524-528
    • /
    • 2006
  • Although equal channel angular pressing (ECAP), imposing large plastic shear strain deformation by moving a workpiece through two intersecting channels, is a promising severe plastic deformation method for grain refinement of metallic materials, its batch type characteristic makes ECAP inefficient for multiple-passing. Rotary-die ECAP (RDECAP) proposed by Nishida et al. can achieve high productivity by using continuous processing without taking out the samples from the channel. However, plastic deformation behavior during RD-ECAP has not been investigated. In this study, material plastic flow and strain hardening behavior of the workpiece during RD-ECAP was investigated using the finite element method. It was found that plastic deformation becomes inhomogeneous with the number of passes due to an end effect, which was not found seriously in ECAP. Especially, decreasing corner gap with increasing the number of passes was observed and explained by the strain hardening effect.

고층 RC 벽식 비정정 구조물의 지진거동에 관한 실험적 연구 (Experimental Study on the Seismic Response of High-Rise RC Bearing-Wall Structures with Irregularity)

  • 이한선;고동우
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.321-328
    • /
    • 2003
  • The objective of this study is to investigate the seismic response of high-rise RC bearing-wall structures with irregularity. For this purpose, three 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have three different layouts of the plan : The first one is a moment-resisting frame system, the second has a infilled shear wall with symmetric plan and the third has a infilled shear wall with eccentricity, Then, these models were subjected to a series of earthquake excitations. The test results show the followings: 1) the existence of shear wall reduced greatly shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle, 2) the frame with shear wall resists most of overturning moment in severe earthquake, 3) the torsional behavior is almost independent of the translational, 4) the absorbed energy due to the overturning deformation has the largest portion in the total absorbed energy.

  • PDF

ECAP한 Al 판재의 판재성형성 (Formability of ECAPed Al Alloy Sheet)

  • ;김인수;이민구;박병현
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.285-287
    • /
    • 2006
  • Ultra-fine grained and high hardened Al sheet was obtained by Equal channel angular pressing (ECAP). During this process the microstructure, the hardness and the texture of AA 1050 Al alloy sheet are changed by a severe shear deformation. The plastic strain ratio after the ECAP and subsequent heat-treatment condition has been investigated in this study. It was found that the average r-value of the ECAPed and subsequent heat-treated specimen was 1.7 times higher than those of the initial Al sheet. This could be attributed to the various texture formations through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheet.

  • PDF

ECAP 한 알루미늄 판재의 성형성 연구 (Formability of ECAPed Al Alloy Sheet)

  • 사이드무로드아크라모프;김인수;이민구;박병현
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.88-91
    • /
    • 2006
  • Ultra-fine grained and high hardened Al sheet was obtained by Equal Channel Angular Pressing (ECAP). During this process the microstructure, the hardness and the texture of AA 1050 Al alloy sheet are changed by a severe shear deformation. The plastic strain ratio after the ECAP and subsequent heat-treatment condition was investigated in this study. It was found that the average r-value of the equal channel angular pressed and subsequent heat-treated specimen was 1.7 times higher than that of the initial Al sheet. This could be attributed to the various texture formations through the ECAP and subsequent heat-treatment of AA 1050 Aluminum alloy sheets.

  • PDF

분말 ECAP 공정 시 치밀화의 유한요소해석 (Finite Element Analysis of Densification Behavior during Equal Channel Angular Pressing Process of Powders)

  • 윤승채;팜쾅;천병선;이홍로;김형섭
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.415-420
    • /
    • 2006
  • Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.

Effects of Constrained Groove Pressing (CGP) on the plane stress fracture toughness of pure copper

  • Mohammadi, Bijan;Tavoli, Marzieh;Djavanroodi, Faramarz
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.957-969
    • /
    • 2014
  • Among severe plastic deformation methods, groove pressing is one of the prominent techniques for producing ultra-fine grained sheet materials. This process consists of imposing repetitive severe plastic deformation on the plate or sheet metals through alternate pressing. In the current study, a 2 mm pure Cu sheet has been subjected to repetitive shear deformation up to two passes. Hardness and tensile yield and ultimate stress were obtained after groove pressing. Fracture toughness tests have been performed and compared for three conditions of sheet material namely as received (initial annealed state), after one and two passes of groove pressing. Results of experiments indicate that a decrease in the values of fracture toughness attains as the number of constrained groove pressing (CGP) passes increase.

분말 ECAP 공정에 미치는 금형 모서리각 효과에 대한 유한요소해석 (Finite Element Analysis on the Effect of Die Corner Angle in Equal Channel Angular Pressing Process of Powders)

  • 윤승채;복천희;팜쾅;김형섭
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.26-31
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both real density and grain refinement of metallic powders. ECAP (Equal Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method. Effects of processing parameters on densification and density distributions were investigated.