• Title/Summary/Keyword: Settlement prediction technique

Search Result 31, Processing Time 0.027 seconds

A Comparative Study on the Prediction of the Final Settlement Using Preexistence Method and ARIMA Method (기존기법과 ARIMA기법을 활용한 최종 침하량 예측에 관한 비교 연구)

  • Kang, Seyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.29-38
    • /
    • 2019
  • In stability and settlement management of soft ground, the settlement prediction technology has been continuously developed and used to reduce construction cost and confirm the exact land use time. However, the preexistence prediction methods such as hyperbolic method, Asaoka method and Hoshino method are difficult to predict the settlement accurately at the beginning of consolidation because the accurate settlement prediction is possible only after many measurement periods have passed. It is judged as the reason for estimating the future settlement through the proportionality assumption of the slope which the preexistence prediction method computes from the settlement curve. In this study, ARIMA technique is introduced among time series analysis techniques and compared with preexistence prediction methods. ARIMA method was predictable without any distinction of ground conditions, and the results similar to the existing method are predicted early (final settlement).

Prediction Technique of Vibration Induced Settlement -On the Basis of Case Studies (지반 진동에 의한 주변침하 예측기법 사례 연구를 중심으로)

  • 김동수;이진선
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.103-116
    • /
    • 1996
  • Man-made vibrations from traffic and construction activities are important because they may cause damage to structures. The current literature provides that damages in the urban areas were not caused by direct transmission of vibration, but rather through subsequent settlement caused by soil densification. In this paper. prediction technique of ground borne vibration induced settlement was introduced on the basis of case studies. In situ application technique of the settlement prediction model developed in laboratary was described, and the predicted settlement was compared with the measured settlement from case studies. The settlement from case studies hlatched well with the settlement calculated from the model. The parametric studies of settlement in typical urban site conditions were performed to determine the sensitive parameters and to develop reliable vibration monitoring and interpretation schemes. These demonstrated the potential usefulness of the model for the evaluation and prediction of the vibration induced in-situ settlement of sands.

  • PDF

A Deformation Prediction of the Embankment on the Soft Clayey Foundation - A Case Study of the Sea Dike of Koheung Bay - (점성토지반에 축조한 제방의 변형추정 -고흥만 방수제 사례연구를 중심으로-)

  • 오재화;이문수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.94-102
    • /
    • 1998
  • This paper aims at developing the prediction technique of the deformation for the embankment such as sea dike and shore protection relevant to reclamation project along the southern coast of the Korean Peninsula. Generally total deformation of a sea dike over clayey foundation are composed of immediate settlement, plastic deformation and consolidation settlement. Plastic deformation occurs when the ultimate bearing capacity is less than overburden pressure containing the stress increment due to the construction of an embankment. The reliable prediction of total settlement is very important since deformed final geometry of sea dike is directly connected for analysing the safety of the long-term slope failure and piping. During this study, plastic deformation, major part of deformation was analysed using the program developed by authors, whereas immediate settlement and consolidation settlement were predicted by Mochinaka and Sena's method and Terzaghi's 1-dimensional theory of consolidation respectively. In order to validate the prediction technique for the deformation, a case study of Koheung Bay reclamation works was carried out. A good agreement was obtained between observation and prediction, which means the applicability of the technique.

  • PDF

A study on the prediction of tunnel crown and surface settlement in tunneling as a function of deformation modulus and overburden

  • Kim Seon-Hong;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.129-141
    • /
    • 2003
  • The precise prediction of ground displacement plays an important role in planning and constructing tunnels. In this study, an equation for predicting the surface and crown settlement is suggested by examining the theories of ground movement caused by tunnel excavation. From the 3D numerical modeling, the reinforcement effect of UAM (Umbrella Arch Method) is quantitatively analyzed with respect to deformation modulus and overburden. By using a regression technique for the numerical results, an equation for predicting the settlement is suggested.

  • PDF

Prediction of Settlement of SCP Composite Ground using Genetic Algorithm (유전자 알고리즘 기법에 근거한 SCP 복합지반의 침하 예측)

  • 박현일;김윤태;이형주
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay wall, sand compaction pile method (SCP) has widely been applied. Improved ground is composite ground which is consisted of the sand pile-surrounding clayey soil. As caisson and upper structures are installed on SCP composite ground, the settlement is compositively occurred by elastic compression of sand compaction piles and also consolidation of the surrounding clay ground. In this study, the combined settlement model is proposed to predict the settlement of SCP composite ground in basis of elastic theory for sand compaction pile and consolidation theory for marine soft clay. Optimization technique was performed based on back-analysis so that real coded genetic algorithm was applied to estimate the parameters of the proposed settlement model. Case analysis was carried out for a domestic SCP composite ground to examine the applicability of the proposed prediction technique.

A Study on the Practical Estimation Technique of a Long-term Settlement by the Observation Results in the Field (현장계획에 의한 연약지반의 장기 침하 예측지법에 관한 실증적 연구)

  • 서수봉;김수삼
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.35-44
    • /
    • 1991
  • This study was carried out for the purpose of pre-estimating long-term settlement under condition of actual field soil's property, in case of building up industrial sites on the marine deposit silty clay located at West Coast in Korea. This study analyzed Hyperbolic Method, Square Root Time Method and Exponential Function Method with utilization of measured survey values of settlement in In-Cheon Namdong Industrial Sites. In the future, for the continuos utilization, it seemed to be needed that further the survey values of fields should be accurartely measured for the analysis of more accurate pre-estimate about long-term settlement. Among the prediction methods of settlement Hyperbolic Method seemed to be the best fitting method for measured data. The settlement equations were derived from above three methods, for long-term settlements.

  • PDF

Settlement prediction for footings based on stress history from VS measurements

  • Cho, Hyung Ik;Kim, Han Saem;Sun, Chang-Guk;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.371-384
    • /
    • 2020
  • A settlement prediction method based on shear wave velocity measurements and soil nonlinearity was recently developed and verified by means of centrifuge tests. However, the method was only applicable to heavily overconsolidated soil deposits under enlarged yield surfaces. In this study, the settlement evaluation method was refined to consider the stress history of the sublayer, based on an overconsolidation ratio evaluation technique, and thereby incorporate irrecoverable plastic deformation in the settlement calculation. A relationship between the small-strain shear modulus and overconsolidation ratio, which can be determined from laboratory tests, was adopted to describe the stress history of the subsurface. Based on the overconsolidation ratio determined, the value of an empirical coefficient that reflects the effect of plastic deformation over the elastic region is determined by comparing the overconsolidation ratio with the stress increment transmitted by the surface design load. The refined method that incorporate this empirical coefficient was successfully validated by means of centrifuge tests, even under normally consolidated loading conditions.

Prediction of Tunnel Behavior Using Artificial Neural Network (터널거동 평가에서의 인공신경망 활용기법 연구)

  • Yoo, Chung-Sik;Kim, Joo-Mi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1324-1334
    • /
    • 2005
  • This study investigated the applicability of the Artificial Neural Network (ANN) technique for prediction of tunnel behavior. For training data collection, a series of finite element analyses were conducted for actual tunnel project site. Using the data, optimimzed ANNs were developed through a sensitivity study on internal parameters. The developed ANNs can make tunneling related predictions such as tunnel crown settlement, shotcrete lining stress, ground surface settlement, and groundwater inflow rate. The results indicated that the developed ANNs can be used as an effective and efficient tool for tunnelling related prediction in practical tunneling situations.

  • PDF

Settlement Data Acquisition and Analysis Technique by Personal Computer (Personal Computer를 이용한 침하 안정 관리기법)

  • 송정락;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.332-347
    • /
    • 1991
  • Accurate prediction of future settlement is essential for the settlement control of soft soil by pre-loading method. To predict future settlement in clayey soft soils, several methods like Asaoka method, Hyperbolic Method and Hoshino method are currently being used. These methods predict the future sett1ement by mathmatical treatment of the measured settlement data on the basis of consolidtion theory and empiricism. But the correlation coefficient between the measured and the predicted settlement was relatively low (0.8~0.9). Also, the prediction of future settlemet for the design load is very difficult. In this article, the measured field settlement data was treated as the the field consolidation test. Hence, condolidation coefficient(Cv) and compression index(Cc) was evaluated from the field settlement data. Cv and Cc values from field data was used to calculate the degree of consolidation and settlement at desired time. By this method, the correlation coefficent between the measured and the predicted settlement was significantly increased(0.97~0.99). Also the settlement by the design load after the improvement of soft soil could be predicted reasonably. This method is quite rational and sound but it requires thousands of calculation steps. Today, by the aid of low priced personal computers above mentioned technique could be used much acre economically and effectively than conventional methods. This article presented the mechanisms and capacities of this method and demonstrated the enhanced correlation coefficient when applied to actual field settlement data.

  • PDF

Reliability assessment of EPB tunnel-related settlement

  • Goh, Anthony T.C.;Hefney, A.M.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.57-69
    • /
    • 2010
  • A major consideration in the design of tunnels in urban areas is the prediction of the ground movements and surface settlements associated with the tunneling operations. Excessive ground movements can damage adjacent building and utilities. In this paper, a neural network model is used to predict the maximum surface settlement, based on instrumented results from three separate EPB tunneling projects in Singapore. This paper demonstrates that by coupling the trained neural network model to a spreadsheet optimization technique, the reliability assessment of the settlement serviceability limit state can be carried out using the first-order reliability method. With this method, it is possible to carry out sensitivity studies to examine the effect of the level of uncertainty of each parameter uncertainty on the probability that the serviceability limit state has been exceeded.