• Title/Summary/Keyword: Settlement at the dam crest

Search Result 12, Processing Time 0.024 seconds

Prediction of earthquake-induced crest settlement of embankment dams using gene expression programming

  • Evren, Seyrek;Sadettin, Topcu
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.637-651
    • /
    • 2022
  • The seismic design of embankment dams requires more comprehensive studies to understand the behaviour of dams. Deformations primarily control this behaviour occur during or after earthquake loading. Dam failures and incidents show that the impacts of deformations should be reviewed for existing and new embankment dams. Overtopping erosion failure can occur if crest deformations exceed the freeboard at the time of the deformations. Therefore, crest settlement is one of the most critical deformations. This study developed empirical formulas using Gene Expression Programming (GEP) based on 88 cases. In the analyses, dam height (Hd), alluvium thickness (Ha), the magnitude-acceleration-factor (MAF) values developed based on earthquake magnitude (Mw) and peak ground acceleration (PGA) within this study have been chosen as variables. Results show that GEP models developed in the paper are remarkably robust and accessible tools to predict earthquake-induced crest settlement of embankment dams and perform superior to the existing formulation. Also, dam engineering professionals can use them practically because the variables of prediction equations are easily accessible after the earthquake.

A Study on Settlement Prediction of Concrete-faced Rockfill Dam Using Measured Data During Construction and After Impounding (시공 중 및 담수 후 계측데이터를 이용한 CFRD의 침하량 예측 연구)

  • Lee, Chungwon;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.5-13
    • /
    • 2015
  • In the present study, the prediction methods of the crest settlement after impounding and the maximum internal settlement during dam construction were proposed through the analysis on settlement data at 38 monitored points of 36 Concrete-Faced Rockfill Dams (CFRDs). The results from this analysis provided that the crest settlement and the maximum internal settlement are increased in proportion to the dam height and the void ratio. However, the relationship between internal settlement and dam height for each void-ratio range plotted in semi-logarithmic scale is the nearly same. Also, the prediction of the crest settlement of the CFRD is possible through the maximum internal settlement during dam construction. In addition, it seems that the valley shape highly affects the dense dam body with high construction modulus. The results of this study will provide the useful tool for the design, construction and management of CFRDs.

Long-term Settlement Prediction of Center-cored Rockfill Dam using Measured Data (계측자료를 이용한 중심코어형 석괴댐의 장기침하량 예측)

  • Lee, Chungwon;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.21-27
    • /
    • 2014
  • In this study, the prediction methods for the crest settlement after impounding and the maximum internal settlement during dam construction were proposed through the analysis on settlement data at 46 monitored points of 37 Center-Cored Rockfill Dams (CCRDs). Results from this analysis provided that the crest settlement increases with elapsed time, and from the relationship between the dam height and the maximum internal settlement during dam construction, it is confirmed that the internal settlement was largely evaluated when the coarse-grained material was used as the dam core. This internal settlement increased in proportion to the dam height. In addition, the crest settlement of the CCRD with the core compacted with fine-grained material was relatively large. It is expected that the results of this study would provide the practical tool for the design, construction and management of CCRDs.

Sensitivity Analysis on Rockfill Material Parameters Influencing Crest Displacement of Concrete-Faced Rockfill Dam (콘크리트 표면차수벽형 석괴댐 정상부 변위에 영향을 미치는 입력물성에 대한 민감도분석)

  • Ha, Ik-Soo;Seo, Min-Woo;Shin, Dong-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.846-853
    • /
    • 2006
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of Concrete-Faced Rockfill Dam(CFRD) was carried out. The purpose of this study is to indicate the most important input parameter and to show the quantitative variation of displacement at the crest of CFR type dam with this input parameter. The rockfill material properties for parametric study were obtained from the results of large scale triaxial tests on 34 rockfill materials in the 22 different sites. From the statistical analysis on these data, some statistical characteristics of rockfill material properties such as property range, distribution characteristics, and correlation between the properties were investigated. based on these characteristics, 27 property combinations were constituted by Latin Hypercube sampling method. Dam crest displacements after construction, impounding, and earthquake loading were evaluated by static and dynamic numerical analysis on each combination. From the sensitivity analysis, it was found that the crest displacement of CFR type dam was absolutely affected by the shear modulus of rockfill material and the effect of friction angle of it was negligible. This relative difference of sensitivity was more outstanding in case of crest settlement than in case of crest horizontal displacement. Also, it was found that the settlement and horizontal displacement of dam crest logarithmically decreased as the shear modulus increased and the difference between the maximum value and the minimum vale amounted to about 9.5 times in case of settlement and about 10 times in case of horizontal displacement.

  • PDF

Sensitivity Analysis of Rockfill Parameters Influencing Crest Displacements of CFRD Subjected to Earthquake Loading (지진하중을 받는 필댐 정부변위에 영향을 미치는 입력물성에 대한 민감도 분석)

  • Ha, Ik-Soo;Shin, Dong-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.351-357
    • /
    • 2006
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of Concrete-Faced Rockfill Dam(CFRD) subjected to earthquake loading was carried out. The purpose of this study is to indicate the most important input parameter and to show the quantitative variation of displacement at the crest of CFR type dam during earthquake loading with this input parameter. From the sensitivity analysis, it was found that the crest displacement of CFR type dam subjected to dynamic loading was absolutely affected by the shear modulus of rockfill material and the effect of friction angle of it was negligible. This relative difference of sensitivity was more outstanding in case of crest settlement than in case of crest horizontal displacement. Also, it was found that the extent of effect of shear modulus on the displacement at the crest of CFRD due to dynamic loading decreased as maximum amplitude of input acceleration increased.

  • PDF

The Stability Evaluation of Concrete Face Rockfill Dam(CFRD) Using Settlement Measured at the Dam Crest and Kelvin Model (계측자료 및 Kelvin 모델에 의한 콘크리트 표면차수벽형 석괴댐(CFRD)의 안정성 평가)

  • Lee, Heeman;Lim, Heuidae;Cho, Gyechun;Song, Kiil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.33-46
    • /
    • 2013
  • Recently, the projects which are to increase the capacity of the flood control are being actively performed because of the abnormal climate changes throughout the country. In this study, the regression analysis was performed using both Kelvin model and the real settlement measured at the crest of the existing concrete face rockfill dam(CFRD) to estimate the long-term deformation behavior characteristics such as creep which occurs without additional load. In addition, the effects on changes in physical properties (E, G, K) of the dam construction materials by deformation characteristics of the dam were evaluated, and the reasonable stability analysis method of the dam was proposed to obtain the long-term stability considering the changes in physical properties induced by the long-term deformation behavior in case of heightening the existing dams.

Evaluation of the Effect of Input Motions on Earthquake-Induced Settlement of Embankment Dams (입력지진파에 따른 지진 시 필댐의 침하량 영향관계 분석)

  • Jo, Seong-Bae;Kim, Nam-Ryong;Kim, Tae Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.509-520
    • /
    • 2020
  • Currently, the criteria for input motions used in dam seismic design are clearly presented in general provisions of seismic design (KDS 17 10 00), and seismic ground motion records should be matched to the standard design response spectrum. However, the effect on the results is not assessed according to the selection of the seismic ground motion records, making it difficult to select seismic input motions. Therefore, in this study, the change in the amount of crest settlement of an embankment dam was assessed through numerical analysis after matching the seismic ground motion records of domestic and overseas earthquakes in accordance with the standard design response spectrum provided in the seismic design code (KDS 17 10 00). The results showed that the behavior of the upper part of the embankment, such as maximum acceleration at the crest and amplification through the dam, rather than the effect of free-field acceleration, had a greater effect on the amount of crest settlement. Moreover, it was confirmed that even an input seismic motion matched to the standard design response spectrum can make a difference in settlement depending on the characteristics of amplification through a dam body.

Estimation of Settlement on the Crest of CFRD Subjected to Earthquake Loading Using Sensitivity Analysis (민감도분석을 통한 지진하중을 받는 CFRD 정상부 침하량 예측)

  • Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest settlement of CFRD (Concrete-Faced Rockfill Dam) subjected to earthquake loading was carried out. The purpose of this study is to indicate the most important input parameter from the results of sensitivity analysis, to show the quantitative variation of settlement at the crest of CFR type dam during earthquake with this input parameter, and to recommend the approximate estimation method of the settlement on the crest of CFRD subjected to earthquake loading. The statistic characteristics of rockfill parameters which were obtained from large triaxial tests were evaluated. The total 108 dynamic numerical analyses (2 input earthquake, 2 magnitudes for each earthquake, 27 rockfill material property combinations) on CFRD were conducted. The global sensitivity analysis was carried out using the results of numerical analysis. From the sensitivity analysis, It was found that the crest settlement of the CFRD subjected to earthquake was absolutely affected by the shear modulus of rockfill material irrespective of the input earthquakes and the magnitude of input acceleration. On the contrary, it was found that the effect of cohesion and friction angle of rockfill was negligible. From the results of sensitivity analysis and numerical analysis, the approximate estimation method of the settlement on the crest of CFRD subjected to earthquake loading was recommended on condition that the rockfill shear modulus and simple dam information was known.

Effects of a Degree of Discretization in the Direction of Longitudinal Dam Axis on the Results of 3-D Fill Dam Response Analysis (댐 축방향 분할도가 3차원 필댐 지진응답해석 결과에 미치는 영향)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.72-83
    • /
    • 2009
  • The purpose of this study is to examine the effects of a degree of discretization in the direction of longitudinal dam axis on the results of three dimensional fill dam dynamic analysis. In this study, the three dimensional dynamic analyses of the existing 'H' dam which is modeled with a different degree of discretization were carried out. From these results, the fundamental frequency of the dam and the responses at the dam crest such as acceleration and settlement were compared and analyzed. It was concluded that the size of finite element discretized in the direction of the longitudinal axis mush be smaller than 1/8 of dam length in order to obtain the reasonable fundamental frequency and response of acceleration and mush be smaller than 1/10 in order to obtain the reasonable settlement behaviors from the three dimensional dynamic analysis of the fill dam.

  • PDF

A Basic Study on Relative Liquefaction Failure Risk Assessment of Domestic Small to Medium-Sized Earthfill Dams (국내 중소규모 흙댐의 상대적 액상화 파괴위험도 평가 기초 연구)

  • Park, Tae Hoon;Ha, Ik-soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.147-155
    • /
    • 2023
  • This study aims to present a method to evaluate the relative risk of failure due to liquefaction of domestic small to medium-sized earthfill dams with a height of less than 15 m, which has little information on geotechnical properties. Based on the results of previous researches, a series of methods and procedures for estimating the probability of dam failure due to liquefaction, which calculates the probability of liquefaction occurrence of the dam body, the amount of settlement at the dam crest according to the estimation of the residual strength of the dam after liquefaction, the overtopping depth determined from the amount of settlement at the dam crest, and the probability of failure of the dam due to overtopping was explicitly presented. To this end, representative properties essential for estimating the probability of failure due to the liquefaction of small to medium-sized earthfill dams were presented. Since it is almost impossible to directly determine these representative properties for each of the target dams because it is almost impossible to obtain geotechnical property information, they were estimated and determined from the results of field and laboratory tests conducted on existing small to medium-sized earthfill dams in previous researches. The method and procedure presented in this study were applied to 12 earthfill dams on a trial basis, and the liquefaction failure probability was calculated. The analysis of the calculation results confirmed that the representative properties were reasonable and that the overall evaluation procedure and method were effective.