• Title/Summary/Keyword: Service Life Prediction

Search Result 247, Processing Time 0.029 seconds

Service Life Prediction for Building Materials and Components with Stochastic Deterioration (추계적 열화모형에 의한 건설자재의 사용수명 예측)

  • Kwon, Young-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • The performance of a building material degrades as time goes by and the failure of the material is often defined as the point at which the performance of the material reaches a pre-specified degraded level. Based on a stochastic deterioration model, a performance based service life prediction method for building materials and components is developed. As a stochastic degradation model, a gamma process is considered and lifetime distribution and service life of a material are predicted using the degradation model. A numerical example is provided to illustrate the use of the proposed service life prediction method.

Service Life Prediction of Components or Materials Based on Accelerated Degradation Tests (가속열화시험에 의한 부품·소재 사용수명 예측에 관한 연구)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.103-111
    • /
    • 2017
  • Purpose: Accelerated degradation tests can speed time to market and reduce the test time and costs associated with long term reliability tests to verify the required service life of a product or material. This paper proposes a service life prediction method for components or materials using an accelerated degradation tests based on the relationships between temperature and the rate of failure-causing chemical reaction. Methods: The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed and least square estimation is used to estimate model parameters from the degradation model. Results: Methods of obtaining acceleration factors and predicting service life using the degradation model are presented and a numerical example is provided. Conclusion: Service life prediction of a component or material is possible at an early stage of the degradation test by using the proposed method.

Prediction model of service life for tunnel structures in carbonation environments by genetic programming

  • Gao, Wei;Chen, Dongliang
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.373-389
    • /
    • 2019
  • It is important to study the problem of durability for tunnel structures. As a main influence on the durability of tunnel structures, carbonation-induced corrosion is studied. For the complicated environment of tunnel structures, based on the data samples from real engineering examples, the intelligent method (genetic programming) is used to construct the service life prediction model of tunnel structures. Based on the model, the prediction of service life for tunnel structures in carbonation environments is studied. Using the data samples from some tunnel engineering examples in China under carbonation environment, the proposed method is verified. In addition, the performance of the proposed prediction model is compared with that of the artificial neural network method. Finally, the effect of two main controlling parameters, the population size and sample size, on the performance of the prediction model by genetic programming is analyzed in detail.

The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion (철근부식에 의한 육지 콘크리트의 잔존수명 예측)

  • 정우용;윤영수;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

Prediction of Service Life of a Respirator Cartridge for Organic Solvent by Using Yoon and Nelson's Adsorption Model (Yoon과 Nelson의 흡착모델을 이용한 방독마스크 정화통의 수명예측(I))

  • Kim, Ki-Hwan;Won, Jung-Il
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.1
    • /
    • pp.20-31
    • /
    • 2008
  • A respirator is useful to protect a worker from the harmful gases and vapors in the workplace, and the evaluation of respirator cartridge service life is important for the worker's health and safety. The performance of cartridge is effected by several factors such as concentration of gas and vapor, humidity, temperature, adsorbents and cartridge packing density. Adsorption model was applied to both sampling tube and respirator cartridge to predict the service life for organic vapors. The variables of the adsorption model were measured from the experiment with the sampling tube, and it was used to predict the service life of respirator cartridge. In the experiment, we used carbon tetrachloride as a organic vapor and activated carbon take out respirator cartridge as activated carbon. As a result, it was possible to predict the service life of respirator cartridge and predicted service life was quite correct. Breakthrough time decreased with increase of CCl4 concentration. In case of sampling tube, adsorbed amount of CCl4 was larger than respirator cartridge due to linear velocity. Also, rate constant of sampling tube was larger than respirator cartridge, because of, effect of flow rate, packing density. In the prediction of service life of respirator cartridge by using sampling tube, the time required for 50% contaminant breakthrough(${\tau}$) is more effective than the rate constant(k').

Service life prediction of CFRP bar for concrete reinforcement based on accelerated degradation tests (가속열화시험에 의한 콘크리트용 탄소섬유 강화플라스틱 바의 사용수명 예측)

  • Kwon, Young-Il;Kim, Seung-Jin;Lee, Hyoung-Wook
    • Journal of Applied Reliability
    • /
    • v.9 no.2
    • /
    • pp.71-80
    • /
    • 2009
  • This paper discusses the service life prediction methods for CFRP bar for concrete reinforcement using accelerated degradation tests. The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed for the temperature accelerated degradation tests. Methods of obtaining acceleration factors and predicting service life of the CFRP bar using the degradation model are presented.

  • PDF

Prediction of RC structure service life from field long term chloride diffusion

  • Safehian, Majid;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.589-606
    • /
    • 2015
  • It is well-documented that the major deterioration of coastal RC structures is chloride-induced corrosion. Therefore, regional investigations are necessary for durability based design and evaluation of the proposed service life prdiction models. In this paper, four reinforced concrete jetties exposed to severe marine environment were monitored to assess the long term chloride penetration at 6 months to 96 months. Also, some accelerated durability tests were performed on standard samples in laboratory. As a result, two time-dependent equations are proposed for basic parameters of chloride diffusion into concrete and then the corrosion initiation time is estimated by a developed probabilistic service life model Also, two famous service life prediction models are compared using chloride profiles obtained from structures after about 40 years in the tidal exposure conditions. The results confirm that the influence of concrete quality on diffusion coefficients is related to the concrete pore structure and the time dependence is due to chemical reactions of sea water ions with hydration products which lead a reduction in pore structure. Also, proper attention to the durability properties of concrete may extend the service life of marine structures greater than fifty years, even in harsh environments.

Service Life Prediction of Rubber Bushing for Tracked Vehicles

  • Woo, Chang-Su;Kang, In-Sug;Lee, Kang-Suk
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.81-87
    • /
    • 2020
  • Service life prediction and evaluation of rubber components is the foundational technology necessary for securing the safety and reliability of the product and to ensure an optimum design. Even though the domestic industry has recognized the importance thereof, technology for a systematic design and analysis of the same has not yet been established. In order to develop this technology, identifying the fatigue damage parameters that affect service life is imperative. Most anti-vibration rubber components had been damaged by repeated load and aging. Hence, the evaluation of the fatigue characteristics is indispensable. Therefore, in this paper, we propose a method that can predict the service life of rubber components relatively accurately in a short period of time. This method works even in the initial designing stage. We followed the service life prediction procedure of the proposed rubber components. The weak part of the rubber and the maximum strain were analyzed using finite element analysis of the rubber bushing for the tracked vehicles. In order to predict the service life of the rubber components that were in storage for a certain period of time, the fatigue test was performed on the three-dimensional dumbbell specimen, based on the results obtained by the rubber material acceleration test. The service life formula of the rubber bushing for tracked vehicles was derived using both finite element analysis and the fatigue test. The service life of the rubber bushing for tracked vehicles was estimated to be about 1.7 million cycles at room temperature (initial stage) and about 400,000 cycles when kept in storage for 3 years. Through this paper, the service life for various rubber parts is expected be predicted and evaluated. This will contribute to improving the durability and reliability of rubber components.

Correlation Effect of Maintenances on Probabilistic Service Life Management (확률론적 구조물 수명관리의 유지보수 상관관계 영향 평가)

  • Kim, Sunyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.48-55
    • /
    • 2016
  • The assessment and prediction of service life of a structure are usually under uncertainty so that rational probabilistic concepts and methods have to be applied. Based on these rational assessment and prediction, optimum maintenance strategies to minimize the life-cycle cost and/or maximize the structural safety can be established. The service life assessment and prediction considering maintenance actions generally includes effects of maintenance types and times of the structural components on the service life extensions of structural system. Existing researches on the service life management have revealed the appropriate system modeling considering the correlation among the components is required for system reliability analysis and probabilistic service life estimation. However, the study on correlation among the maintenance actions is still required. This paper deals with such a study for more effective and efficient service life management. In this paper, both the preventive and essential maintenances are considered for the extended service life estimation and management.

Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress

  • Zambon, Ivan;Vidovic, Anja;Strauss, Alfred;Matos, Jose;Friedl, Norbert
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.305-320
    • /
    • 2018
  • The second half of the 20th century was marked with a significant raise in amount of railway bridges in Austria made of reinforced concrete. Today, many of these bridges are slowly approaching the end of their envisaged service life. Current methodology of assessment and evaluation of structural condition is based on visual inspections, which, due to its subjectivity, can lead to delayed interventions, irreparable damages and additional costs. Thus, to support engineers in the process of structural evaluation and prediction of the remaining service life, the Austrian Federal Railways (${\ddot{O}}$ BB) commissioned the formation of a concept for an anticipatory life cycle management of engineering structures. The part concerning concrete bridges consisted of forming a bridge management system (BMS) in a form of a web-based analysis tool, known as the LeCIE_tool. Contrary to most BMSs, where prediction of a condition is based on Markovian models, in the LeCIE_tool, the time-dependent deterioration mechanisms of chloride- and carbonation-induced corrosion are used as the most common deterioration processes in transportation infrastructure. Hence, the main aim of this article is to describe the background of the introduced tool, with a discussion on exposure classes and crucial parameters of chloride ingress and carbonation models. Moreover, the article presents a verification of the generated analysis tool through service life prediction on a dozen of bridges of the Austrian railway network, as well as a case study with a more detailed description and implementation of the concept applied.