• Title/Summary/Keyword: Serine/threonine kinase

Search Result 133, Processing Time 0.027 seconds

Protopanaxadiol ameliorates palmitate-induced lipotoxicity and pancreatic β-cell dysfunction in INS-1 cells

  • Dahae Lee;Sungyoul Choi;Ki Sung Kang
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.572-582
    • /
    • 2023
  • Background: Free fatty acid-induced lipotoxicity is considered to play an important role in pancreatic β-cell dysfunction. The effect of ginsenosides on palmitic acid-induced pancreatic beta-cells cell death and failure of glucose-stimulated secretion of insulin (GSIS) was evaluated in this study. Methods: Enzyme-linked immunosorbent assay kit for a rat insulin was used to quantify glucose-stimulated insulin secretion. Protein expression was examined by western blotting analysis. Nuclear condensation was measured by staining with Hoechst 33342 stain. Apoptotic cell death was assessed by staining with Annexin V. Oil Red O staining was used to measure lipid accumulation. Results: We screened ginsenosides to prevent palmitic acid-induced cell death and impairment of GSIS in INS-1 pancreatic β-cells and identified protopanaxadiol (PPD) as a potential therapeutic agent. The protection effect of PPD was likely due to a reduction in apoptosis and lipid accumulation. PPD attenuated the palmitic acid-induced increase in the levels of B-cell lymphoma-2-associated X/B-cell lymphoma 2, poly (ADP-ribose) polymerase and cleaved caspase-3. Moreover, PPD prevented palmitic acid-induced impairment of insulin secretion, which was accompanied by an increase in the activation of phosphatidylinositol 3-kinase, peroxisome proliferator-activated receptor γ, insulin receptor substrate-2, serine-threonine kinase, and pancreatic and duodenal homeobox-1. Conclusion: Our results suggest that the protective effect of PPD on lipotoxicity and lipid accumulation induced by palmitic acid in pancreatic β-cells.

The Activity of Hypertension-related Protein Kinase C and the Relationship of Physical Therapy (고혈압-연관 단백질 부활효소 C의 활성과 물리치료의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Purpose: Protein kinase C (PKC) is a member of a family of serine/threonine kinases that are activated by diacylglycerol (DG) and PKC stimulants. PKC play a key role in signal transduction, including muscle contraction, cell migration, apoptosis, cell proliferation and differentiation. However, the mechanism relating mitogen-activated protein kinases (MAPKs) and PKC, especially in the volume-dependent hypertensive state, remains unclear. Methods: In the present study, I investigated the relationship between PKC and MAPKs for isometric contraction, PKC translocation, and enzymatic activity from normotensive sham-operated rats (NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive rats (ADHR). Results: Systolic blood pressure was significantly increased in ADHR than in NSR. Physiological salt solution (PSS)-induced resting tension and the intracellular $Ca^{2+}$ concentration ([$Ca^{2+}{_i}$]) were different in the ADHR and NSR. The expression of PKC$\alpha$, PKC$\beta$II, PKC$\delta$, PKC$\varepsilon$ and PKC$\xi$ were different between the cytoplasmic and membranous fractions. However, expression of the PKC isoforms did not differ for the ADHR and NSR. The use of 12-deoxyphorbol 13-isobutyrate (DPB, a PKC stimulant) induced isometric contraction in $Ca^{2+}$-free medium, which was diminished in muscle strips from ADHR as compared to NSR. Increased vasoconstriction and phosphorylation induced by the use of 1 ${\mu}$M DPB were inhibited by treatment with 10 ${\mu}$M PD098059 and 10 ${\mu}$M SB203580, inhibitors of extracellular-regulated protein kinase 1/2 (ERK1/2) and p38 MAPK from ADHR, respectively. Conclusion: These results suggest that the development of aldosterone analogue-induced hypertension is associated with an altered blood pressure, resting tension, [$Ca^{2+}{_i}$], and that the $Ca^{2+}$-independent contraction evoked by PKC stimulants is due to the activation of ERK1/2 and p38 MAPK in volume-dependent hypertension. Therefore, it is suggested that PKC activity affects volume-dependent hypertension and the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Expression and Prognostic Role of MEKK3 and pERK in Patients with Renal Clear Cell Carcinoma

  • Chen, Qi;Lu, Hong-sheng;Gan, Mei-fu;Chen, Lan-xi;He, Kai;Fan, Guang-min;Cao, Xue-quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2495-2499
    • /
    • 2015
  • Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) is an important serine/threonine protein kinase and a member of the MAPK family. MEKK3 can effectively activate the MEK/ERK signaling pathway and promote an autocrine growth loop critical for tumor genesis, cell proliferation, terminal differentiation, apoptosis and survival. To explore the relationship between MEKK3 and cell apoptosis, clinicopathology and prognosis, we characterize the expression of MEKK3, pERK and FoxP3 in the renal clear cell carcinoma (RCCC). Protein expression was detected by tissue microarray and immunochemistry in 46 cases of RCCC and 28 control cases. Expression levels of CD3+,CD3+CD4+,CD3+CD8+,CD4+CD25+, CD4+CD25+ FoxP3+ were assessed by flow cytometry and analyzed for their association with pathological factors, correlation and prognosis in RCCC. Expression of MEKK3, pERK and FoxP3 was significantly up-regulated in RCCC as compared to control levels (p<0.01), associated with pathological grade (p<0.05)and clinical stage (p<0.05). CD4+CD25+ Foxp3+ Treg cells were also significantly increased in RCCC patients (p<0.05). Cox multivariate regression analysis showed that MEKK3, pERK expression and patholigical stage were independent prognostic factors in patients with RCCC (p<0.05). MEKK3 can be used as an important marker of early diagnosis and prognostic evaluation in RCCC. It may be associated with imbalance of anti-tumor immunity and overexpression of pERK. Expression of MEKK3 and pERK are significantly increased in RCCC, with protein expression and clinical stage acting as independent prognostic factors.

Phorbol 12-Myristate 13-Acetate Enhances Long-Term Potentiation in the Hippocampus through Activation of Protein Kinase $C{\delta}$ and ${\varepsilon}$

  • Kim, Eung Chang;Lee, Myeong Jong;Shin, Sang Yep;Seol, Geun Hee;Han, Seung Ho;Yee, Jaeyong;Kim, Chan;Min, Sun Seek
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • Many intracellular proteins and signaling cascades contribute to the sensitivity of N-methyl-D-aspartate receptors (NMDARs). One such putative contributor is the serine/threonine kinase, protein kinase C (PKC). Activation of PKC by phorbol 12-myristate 13-acetate (PMA) causes activation of extracellular signal-regulated kinase (ERK) and promotes the formation of new spines in cultured hippocampal neurons. The purpose of this study was to examine which PKC isoforms are responsible for the PMA-induced augmentation of long-term potentiation (LTP) in the CA1 stratum radiatum of the hippocampus in vitro and verify that this facilitation requires NMDAR activation. We found that PMA enhanced the induction of LTP by a single episode of theta-burst stimulation in a concentration-dependent manner without affecting to magnitude of baseline field excitatory postsynaptic potentials. Facilitation of LTP by PMA (200 nM) was blocked by the nonspecific PKC inhibitor, Ro 31-8220 ($10{\mu}M$); the selective $PKC{\delta}$ inhibitor, rottlerin ($1{\mu}M$); and the $PKC{\varepsilon}$ inhibitor, TAT-${\varepsilon}V1$-2 peptide (500 nM). Moreover, the NMDAR blocker DL-APV ($50{\mu}M$) prevented enhancement of LTP by PMA. Our results suggest that PMA contributes to synaptic plasticity in the nervous system via activation of $PKC{\delta}$ and/or $PKC{\varepsilon}$, and confirm that NMDAR activity is required for this effect.

Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation

  • Noh, Kyung Tae;Cha, Gil Sun;Kang, Tae Heung;Cho, Joon;Jung, In Duk;Kim, Kwang-Youn;Ahn, Soon-Cheol;You, Ji Chang;Park, Yeong-Min
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine protein kinase that is known to mediate cancer cell death. Here, we show that B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is regulated by GSK-3β and that GSK-3β-mediated regulation of Bcl-2 is crucial for mitochondrial-dependent cell death in paclitaxel-stimulated cells. We demonstrate that MCF7 GSK-3β siRNA cells are more sensitive to cell death than MCF7 GFP control cells and that in the absence of GSK-3β, Bcl-2 levels are reduced, a result enhanced by paclitaxel. Paclitaxel-induced JNK (c-Jun N-terminal kinase) activation is critical for Bcl-2 modulation. In the absence of GSK-3β, Bcl-2 was unstable in an ubiquitination-dependent manner in both basal- and paclitaxel-treated cells. Furthermore, we demonstrate that GSK-3β-mediated regulation of Bcl-2 influences cytochrome C release and mitochondrial membrane potential. Taken together, our data suggest that GSK-3β-dependent regulation of Bcl-2 is crucial for mitochondria-dependent cell death in paclitaxel-mediated breast cancer therapy. [BMB Reports 2016; 49(1): 51-56]

GSK3β Inhibitor Peptide Protects Mice from LPS-induced Endotoxin Shock

  • Ko, Ryeojin;Jang, Hyun Duk;Lee, Soo Young
    • IMMUNE NETWORK
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Background: Glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) is a ubiquitous serine/threonine kinase that is regulated by serine phosphorylation at 9. Recent studies have reported the beneficial effects of a number of the pharmacological $GSK3{\beta}$ inhibitors in rodent models of septic shock. Since most of the $GSK3{\beta}$ inhibitors are targeted at the ATP-binding site, which is highly conserved among diverse protein kinases, the development of novel non-ATP competitive $GSK3{\beta}$ inhibitors is needed. Methods: Based on the unique phosphorylation motif of $GSK3{\beta}$, we designed and generated a novel class of $GSK3{\beta}$ inhibitor (GSK3i) peptides. In addition, we investigated the effects of a GSK3i peptide on lipopolysaccharide (LPS)-stimulated cytokine production and septic shock. Mice were intraperitoneally injected with GSK3i peptide and monitored over a 7-day period for survival. Results: We first demonstrate its effects on LPS-stimulated pro-inflammatory cytokine production including interleukin (IL)-6 and IL-12p40. LPS-induced IL-6 and IL-12p40 production in macrophages was suppressed when macrophages were treated with the GSKi peptide. Administration of the GSK3i peptide potently suppressed LPS-mediated endotoxin shock. Conclusion: Collectively, we present a rational strategy for the development of a therapeutic GSK3i peptide. This peptide may serve as a novel template for the design of non-ATP competitive GSK3 inhibitors.

The p90rsk-mediated signaling of ethanol-induced cell proliferation in HepG2 cell line

  • Kim, Han Sang;Kim, Su-Jin;Bae, Jinhyung;Wang, Yiyi;Park, Sun Young;Min, Young Sil;Je, Hyun Dong;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • Ribosomal S6 kinase is a family of serine/threonine protein kinases involved in the regulation of cell viability. There are two subfamilies of ribosomal s6 kinase, (p90rsk, p70rsk). Especially, p90rsk is known to be an important downstream kinase of p44/42 MAPK. We investigated the role of p90rsk on ethanol-induced cell proliferation of HepG2 cells. HepG2 cells were treated with 10~50 mM of ethanol with or without ERK and p90rsk inhibitors. Cell viability was measured by MTT assay. The expression of pERK1, NHE1 was measured by Western blots. The phosphorylation of p90rsk was measured by ELISA kits. The expression of Bcl-2 was measured by qRT-PCR. When the cells were treated with 10~30 mM of ethanol for 24 hour, it showed significant increase in cell viability versus control group. Besides, 10~30 mM of ethanol induced increased expression of pERK1, p-p90rsk, NHE1 and Bcl-2. Moreover treatment of p90rsk inhibitor attenuated the ethanol-induced increase in cell viability and NHE1 and Bcl-2 expression. In summary, these results suggest that p90rsk, a downstream kinase of ERK, plays a stimulatory role on ethanol-induced hepatocellular carcinoma progression by activating anti-apoptotic factor Bcl-2 and NHE1 known to regulate cell survival.

3D QSAR Study on Pyrrolopyrimidines-Based Derivatives as LIM2 Kinase Inhibitors

  • Balasubramanian, Pavithra K.;Balupuri, Anand;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.8 no.4
    • /
    • pp.285-292
    • /
    • 2015
  • LIM kinases belong to the serine/Threonine kinase family. The members of the LIM kinase (LIMK) family include LIMK 1 and 2 which are involved in the regulation of actin polymerisation and microtubule disassembly. LIMK1 was shown to be involved in cancer metastasis, while LIMK2 activation promotes cells cycle progression. Since LIMK2 plays a vital role in many disease conditions such as pulmonary hypertension, cancer and viral diseases, and till date there are not much selective inhibitors been reported, LIMK2 becomes an interesting therapeutic target among the kinases. 3D QSAR study was carried out on a series of pyrrolopyrimidines based derivatives as LIMK2 inhibitors. A reasonable CoMFA ($q^2$=0.888; ONC=3; $r^2$=0.974) with good statistical values was developed. The developed model was validated using 1000 runs of boostrapping and was found to be predictable. The results of CoMFA contour map analysis suggested that the bulky substitution at $R_4$ and $R_5$ position are highly desirable to increase the activity. Similarly, positive substitution at $R_3$ position is also required to increase the activity. It is also noted that bulky substitution at $R_1$ position must be avoided. Our results could provide valuable information to enhance the activity of the LIMK2 inhibitors and to design potent pyrrolopyrimidines derivatives.

Inflammatory cytokines in midbrain periaqueductal gray contribute to diabetic induced pain hypersensitivity through phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway

  • Guo, Mochi;Jiang, Zongming;Chen, Yonghao;Wang, Fei;Wang, Zhifeng
    • The Korean Journal of Pain
    • /
    • v.34 no.2
    • /
    • pp.176-184
    • /
    • 2021
  • Background: Diabetes-related neuropathic pain frequently occurs, and the underpinning mechanism remains elusive. The periaqueductal gray (PAG) exhibits descending inhibitory effects on central pain transmission. The current work aimed to examine whether inflammatory cytokines regulate mechanical allodynia and thermal hyperalgesia induced by diabetes through the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway in the PAG. Methods: Streptozotocin (STZ) was administered intraperitoneally to mimic allodynia and hyperalgesia evoked by diabetes in rats. Behavioral assays were carried out for determining mechanical pain and thermal hypersensitivity. Immunoblot and ELISA were performed to examine PAG protein amounts of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as their corresponding receptors in STZ rats, and the expression of PI3K/protein kinase B (Akt)/mTOR signaling effectors. Results: Increased PAG p-PI3K/p-Akt/p-mTOR protein amounts were observed in STZ-induced animals, a PI3K-mTOR pathway inhibition in the PAG attenuated neuropathic pain responses. Moreover, the PAG concentrations of IL-1β, IL-6, and TNF-α and their receptors (namely, IL-1R, IL-6R, and tumor necrosis factor receptor [TNFR] subtype TNFR1, respectively) were increased in the STZ rats. Additionally, inhibiting IL-1R, IL-6R, and TNFR1 ameliorated mechanical allodynia and thermal hyperalgesia in STZ rats, alongside the downregulation of PI3K-mTOR signaling. Conclusions: Overall, the current study suggests that upregulated proinflammatory cytokines and their receptors in the PAG activate PI3K-mTOR signaling, thereby producing a de-inhibition effect on descending pathways in modulating pain transmission, and eventually contributing to neuropathic pain.

Comparison of RNA Interference-mediated Gene Silencing and T-DNA Integration Techniques for Gene Function Analysis in Chinese Cabbage (RNA Interference 및 T-DNA Integration 방법에 의한 배추 기능유전자 Silencing 효과 비교)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.734-742
    • /
    • 2012
  • To compare RNA interference-mediated gene silencing technique and T-DNA integration for gene function analysis in Chinese cabbage, BrSAMS-knockout (KO) line and BrSAMS-knockdown (KD) line were used. The KO line had lost the function of a Brassica rapa S-adenosylmethionine synthetase (BrSAMS) gene by T-DNA insertion and the KD line had shown down-regulated BrSAMS genes' expression by dsRNA cleavage. From microarray results of the KO and KD lines, genes linked to SAMS such as sterol, sucrose, homogalacturonan biosynthesis and glutaredoxin-related protein, serine/threonine protein kinase, and gibberellin-responsive protein showed distinct differences in their expression levels. Even though one BrSAMS gene in the KO line was broken by T-DNA insertion, gene expression pattern of that line did not show remarkable differences compared to wild type control. However, the KD line obtained by RNAi technique showed prominent difference in its gene expression. Besides, change of polyamine and ethylene synthesis genes directly associated with BrSAMS was displayed much more in the KD line. In the microarray analysis of the KO line, BrSAMS function could not be clearly defined because of BrSAMS redundancy due to the genome triplication events in Brassicaceae. In conclusion, we supposed that gene knock-down method by RNAi silencing is more effective than knock-out method by T-DNA insertion for gene function analysis of polyploidy crops such as Chinese cabbage.