• Title/Summary/Keyword: Series DC/DC Converter

Search Result 295, Processing Time 0.031 seconds

Driving Characteristic of Passive Converter for Single Phase SRM (단상 SRM 구동을 위한 Passive Converter 동작특성)

  • Liang, Jianing;Seok, Seung-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.113-115
    • /
    • 2008
  • At the high speed operation, the high demagnetization voltage can reduce the negative torque, so the output power and efficiency can be improved. In this paper, a novel power converter for single phase SRM with high demagnetization voltage is proposed. A simple passive capacitor circuit is added in the front-end, which consists of three diodes and one capacitor. Based on this passive network, the two capacitors can be connected in series and parallel, so the phase winding of SRM obtains general do-link voltage in excitation mode and the double dc-link voltage in demagnetization mode. The operation modes of the proposed converter are analyzed in detail. Some computer simulation results is done to verify the performance of proposed converter.

  • PDF

A Study on Medium Voltage Power Supply with Enhanced Ignition Characteristics for Plasma Torch

  • Jung, Kyung-Sub;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.242-243
    • /
    • 2010
  • This paper investigates a power supply of medium voltage with enhanced ignition characteristics for plasma torch. Series resonant half-bridge topology is presented to be a suitable ignition circuitry. The ignition circuitry is integrated into the main power conversion system of a multi-phase staggered three-level dc-dc converter with a diode front-end rectifier. The plasma torch rated for 3MW, 2kA and having the physical size of 1m long is selected to be a high enthalpy source in waste disposal system. The steady-state and transient operations of plasma torch are simulated. The parameters of Cassie-Mary arc model are calculated based on 3D magneto-hydrodynamic simulations. Circuit simulation waveform shows that the ripple of arc current can be maintained within ${\pm}10%$ of its rated value under the existence of load disturbance. This power conversion configuration provides high enough ignition voltage around 5KA during ignition phase and high arc stability under the existence of arc disturbance noise resulting in a high-performance plasma torch system.

  • PDF

A solid-state switch based high-voltage pulsed power supply (반도체 스위치형의 고전압 펄스 전원장치)

  • Kim, Guang-Hoon;Lee, Hong-Sik;Sytykh, D.;Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.215-217
    • /
    • 2001
  • This paper describes an all solid-state switch pulse generator for various applications where square pulse voltage is required. The pulse generator produces various voltage pulses: voltage $5{\sim}100kV$. current $10{\sim}200A$, pulse width $1{\sim}10{\mu}sec$, repetition rate up to 500Hz. The output power is the combination of these parameters up to 10kW. It consists of a DC-DC converter and several pulse generating modules which are connected in series to obtain higher pulse voltage. Each module contains semiconductor switches (IGBT's), energy storage capacitors and control units to trigger switches. The structure and operational principle are described and the protection circuit for reliable operation is suggested. Experimental results show that the pulse generator can be used for applications with nonlinear loads.

  • PDF

Development of a Compact 50 kV, 10 kW Transformer for High Frequency Switch Mode (50 kV, 10kW 소형 고주파 전원장치 변압기 개발)

  • Son, Y.G.;Oh, J.S.;Jang, S.D.;Cho, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2027-2029
    • /
    • 1998
  • We have developed a compact high frequency switch mode converter (HFSMC) power supply with DC 50 kV output voltage and 10 kW output power. Since the inverter circuit uses 25 kHz rescharging scheme, the current is flowing with t kHz. For the efficient output voltage transform performed a simple design process using the transformer principle and the commercial specification. For the DC 50 kV output, we employed 7 pa windings of secondary coils for the series stac connection of the output with full-bridge rectifi In this paper the design detail and the test re the high frequency transformer together with HFSMC power supply are presented.

  • PDF

Isolated Topologies of Switched-Resonator Converters

  • Jabbari, Masoud;Farzanehfard, Hosein;Shahgholian, Ghazanfar
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.125-131
    • /
    • 2010
  • Switched-resonator converters are a new family of soft switching DC-DC converters where the energy is transferred via a resonator. This paper introduces some isolated topologies of this family. The achieved advantages include, load independent soft-switching, self short-circuit protection, and optimization capability due to topology variety. Compared to conventional series-resonant converters, outstanding advantages such as a smaller fewer number of switches and diodes, a smaller transformer, and lower current stresses are achieved. A general synthesis scheme, functional topologies, and essential relations are included. Experimental results from a laboratory prototype confirm the presented theoretical analysis.

Analysis of Operating Point and Efficiency for 3.3kW SRC-OBC using Duty Control Method (듀티 제어 방법을 적용한 3.3kW SRC-OBC의 동작점 및 효율 분석)

  • Kim, Min-Jung;Ryu, Seung-Hee;Kim, Dong-Hee;Kim, Og-Jin;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.23-24
    • /
    • 2012
  • 본 논문에서는 전기자동차용 탑재형 충전기회로 (On-Board Charger, OBC) 에 사용되는 부하 직렬 공진형 컨버터 (Series loaded Resonant DC-DC Converter, SRC) 의 정전압 제어를 위해 기존에 듀티를 고정하고 주파수만을 제어하던 방법에 듀티도 같이 제어하는 비대칭 듀티 제어 방법 (Asymmetrical Duty Cycle Control) 을 적용하였다. 적용한 SRC-OBC의 등가화 모델의 수식적 분석을 통해 제안한 회로의 동작영역을 도출하여 결과로 얻어진 동작영역에서 제안한 회로의 부하에 따른 효율을 기존 주파수 제어 방법과 비교 분석을 통하여 적용한 제어 방법의 타당성을 검증한다.

  • PDF

Load and Capacitor Stacking Topologies for DC-DC Step Down Conversion

  • Mace, Jules;Noh, Gwangyol;Jeon, Yongjin;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1449-1457
    • /
    • 2019
  • This paper presents two voltage domain stacking topologies for powering integrated digital loads such as multiprocessors or 3D integrated circuits. Pairs of loads and capacitors are connected in series to form a stack of voltage domains. The voltage is balanced by switching the position of the capacitors in one case and the position of the loads in the other case. This method makes the voltage regulation robust to large differential load power consumption. The first configuration can be named the load stacking topology. The second configuration can be named the capacitor stacking topology. This paper aims at proposing and comparing these two topologies. Models of both topologies and a switching scheme are presented. The behavior, control scheme, losses and overall performance are analyzed and compared theoretically in simulation and experiments. Experimental results show that the capacitor stacking topology has better performance with a 30% voltage ripple reduction.

A Study on the Adaptive Piezoelectric Energy Harvesting (적응 제어기를 이용한 압전 소자로부터의 에너지 회수에 대한 연구)

  • Park Jong-Soo;Nam Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.64-71
    • /
    • 2006
  • A target of this paper is to study on the usefulness of the adaptive piezoelectric energy harvesting device as a wireless electrical power supply when it is driven by mechanical vibrations of low frequency. For this purpose, an adaptive control technique and a step-down converter are used. A THUNDER series a piezoelectric material (TH7-R), which has been developed by a NASA engineer is selected for this study. In order to provide a mechanical energy to the piezoelectric material, a mechanical motion vibrator is designed. The adaptive controller is implemented using a dSPACE DS1104 controller board. The do-dc converter with an adaptive control technique harvests energy at over five times the rate of direct charging without a converter.

Development of a Low Cost VI-Tracer for PV System using LabVIEW and DSP (LabVIEW와 DSP를 이용한 초저가 범용 태양광 발전시스템 VI-Tracer 개발)

  • Kim, Sang-Yong;Park, Sang-Soo;Jang, Seong-Jae;Kim, Gyeong-Hun;Seo, Hyo-Ryong;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1049_1050
    • /
    • 2009
  • This paper deals with development of a low cost VI(Voltage-Currrent)-tracer for PV(Photovoltaic) system using LabVIEW and DSP(Digital Signal Processor). Although the conventional VI-tracer is a high cost equipment, it can‘t abstract the detailed parameters of solar cell. To overcome above mentioned disadvantages, in this paper, a converter type VI-tracer is developed. The DSP, which controls the buck-boost DC-DC converter, is used to implement the proposed VI-tracer algorithm. The proposed VI-tracer can abstract more detailed parameters of solar cell; A(temperature constant), Rs(series resistance), and Rsh(parallel resistance). The authors emphasize that the proposed VI-tracer can satisfy the users who need to get various parameters. A comparison between the proposed VI-tracer and the conventional VI-tracer is presented to show the effectiveness of the proposed system.

  • PDF

Medium Voltage Power Supply with Enhanced Ignition Characteristics for Plasma Torches

  • Jung, Kyung-Sub;Suh, Yong-Sug
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.591-598
    • /
    • 2011
  • This paper investigates a power supply of medium voltage with enhanced ignition characteristics for plasma torches. A series resonant half-bridge topology is presented as a suitable ignition circuitry. The ignition circuitry is integrated into the main power conversion system of a multi-phase staggered three-level dc-dc converter with a diode front-end rectifier. A plasma torch rated at 3MW, 2kA and having a physical size of 1m is selected to be the high enthalpy source for a waste disposal system. The steady-state and transient operations of a plasma torch are simulated. The parameters of a Cassie-Mary arc model are calculated based on 3D magneto-hydrodynamic simulations. The circuit simulation waveform shows that the ripple of the arc current can be maintained within ${\pm}10%$ of its rated value under the presence of a load disturbance. This power conversion configuration provides a high enough ignition voltage, around 5KA, during the ignition phase and high arc stability under the existence of arc disturbance noise resulting in a high-performance plasma torch system.