• Title/Summary/Keyword: Serial Concatenated Convolutional Codes(SCCC)

Search Result 4, Processing Time 0.018 seconds

Analysis of Rate-Compatible Punctured Serial Concatenated Convolutional Codes Based on SNR Evolution

  • Shin Seung-Kyu;Shin Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.324-330
    • /
    • 2006
  • The next generation mobile communication systems require error correcting schemes that can be adaptable to various code rates and lengths with negligible performance degradation. Serial concatenated convolutional codes can be a good candidate satisfying these requirements. In this paper, we propose new rate-compatible punctured serial concatenated convolutional code (RCPSCCC) which performs better than the RCPSCCC proposed by Chandran and Valenti in the sense of the rate compatibility. These codes are evaluated and analyzed by using computer simulation and SNR evolution technique. As their application, Type-II hybrid automatic repeat request (HARQ) schemes using both RCPSCCCs are constructed and new RCPSCCC is shown to have better throughput.

Performance Of Iterative Decoding Schemes As Various Channel Bit-Densities On The Perpendicular Magnetic Recording Channel (수직자기기록 채널에서 기록 밀도에 따른 반복복호 기법의 성능)

  • Park, Dong-Hyuk;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.611-617
    • /
    • 2010
  • In this paper, we investigate the performances of the serial concatenated convolutional codes (SCCC) and low-density parity-check (LDPC) codes on perpendicular magnetic recording (PMR) channels. We discuss the performance of two systems when user bit-densities are 1.7, 2.0, 2.4 and 2.8, respectively. The SCCC system is less complex than LDPC system. The SCCC system consists of recursive systematic convolutional (RSC) codes encoder/decoder, precoder and random interleaver. The decoding algorithm of the SCCC system is the soft message-passing algorithm and the decoding algorithm of the LDPC system is the log domain sum-product algorithm (SPA). When we apply the iterative decoding between channel detector and the error control codes (ECC) decoder, the SCCC system is compatible with the LDPC system even at the high user bit density.

Performance of Serial Concatenated Convolutional Codes according to the Concatenation Methods of Component Codes (구성부호의 연접방법에 따른 직렬연접 길쌈부호의 성능)

  • Bae, Sang-Jae;Lee, Sang-Hoon;Joo, Eon-Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.18-25
    • /
    • 2002
  • In this paper, the performance of three types of serial concatenated convolutional codes (SCCC) in AWGN (additive white Gaussian noise) channel is compared and analyzed. As results of simulations, it can be observed that Type I shows the best error performance at lower signal-to-noise ratio (SNR) region. However, Type III shows the best error performance at higher SNR region. It can be also observed the error floor that the performance cannot be improved even though increasing of the number of iterations and SNR at Type I. However, the performance of Type II and Type III are still improved over the five iterations at higher SNR without error floor. And BER performance of three types can be closed to upper bound of three types with increase of SNR. It can be also observed that the upper bound of Type III shows the best performance among the three types due to the greatest free distance.

A Method of Combining Scrambling Technology with Error Control Coding to Realize Both Confidentiality and Reliability in Wireless M2M Communication

  • Zhang, Meng;Wang, Zhe;Guo, Menghan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.162-177
    • /
    • 2012
  • In this paper we present a novel method of applying image scrambling technology which belongs to the information hiding field in the error control coding to introduce confidentiality in wireless machine to machine communication. The interleaver in serial concatenated convolutional codes, which is the key module in overcoming burst errors, is deliberately designed with the scrambling function to provide a low error rate for those authorized transceivers. By contrast, the unauthorized transceivers without keys would get so high an error rate that decoding bits could bring little value, thus realizing both the confidentiality and reliability in wireless machine to machine communication.