• Title/Summary/Keyword: Separation technology

Search Result 3,002, Processing Time 0.031 seconds

Polymeric Membrane Modules for Substituting the $CO_2$ Absorption Column in the DME Plant Process (DME 플랜트 $CO_2$흡수탑 대체용 고분자 분리막 모듈)

  • Chung, Jong-Tae;Lee, Choong-Seop;Koh, Hyung-Chul;Ha, Seong-Yong;Nam, Sang-Yong;Jo, Won-Jun;Baek, Young-Soon
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.142-154
    • /
    • 2012
  • In order to remove $CO_2$ from the DME plant process, we investigated the composite membrane with rubbery polymers as the separation layer and its separation performance of $CO_2$ and $H_2$. Hollow fiber membranes for supporting layer were prepared by solution spinning method. In case of using PDMS as a separation layer, the composite membranes showed the permeation rates of $CO_2$ were over 300 GPU and minimum $CO_2/H_2$ selectivitties were 4.3 and in case of using PEBAX as a separation layer, the composite membranes showed the permeation rates of $CO_2$ were over 120 GPU and minimum $CO_2/H_2$ selectivities were 5.

Gas Transport Properties of Soluble Polyimides Containing Alicyclic Dianhydride (지환족 다이안하이드라이드를 포함하는 용해성 폴리이미드의 기체투과특성)

  • Kim, Eun Hee;Park, Chae Young;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • In this work, soluble polyimides were synthesized and characterized from 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and two diamines such as 4,4'-diaminodiphenylether (ODA), 1,4-phenylenediamine (p-PDA). Their thermal properties were analyzed with differential scanning calorimeter (DSC). The gas permeability coefficients (P) and ideal selectivity for $CH_4$ and $CO_2$ of the prepared polyimide membranes were measured with a time-lag apparatus. DOCDA-ODA, DOCDA-p-PDA showed good permeability and selectivity; the permeabilities of $CO_2$ was 6.10, 0.74 barrers and the selectivity of $CO_2/CH_4$ were 67.03, 46.25, respectively. Therefore, DOCDA-ODA showed good possibility as gas separation membrane.

Separation Between Soil Particles and Magnetic Beads by Magnetic Force (자력을 이용한 토양입자와 마이크로자성체의 분리 연구)

  • So, Hyung-Suk;Shin, Hyun-Chul;Yoo, Yeong-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.76-80
    • /
    • 2005
  • It was evaluated whether magnetic beads able to add the functionality of environment purification can be employed in processing soil pollutants. In this study, the micro scale magnetic beads containing carboxyl groups were mixed with water and the soil $(<0.025{\cal}mm) filtered through a sieve, and then it was agitated before isolating the magnetic substances by the use of outer magnetic force. The factors considered at this step were the ratio of soil to magnetic beads, ratio of soil to water, size of the tube where the reaction occur, and intensity of the magnetic force. From the separation experiment between soil and magnetic beads, it was concluded that the magnetic beads and water quantity have an impact on the degree of separation, yet the size of the tube and magnetic force does not have a considerable effect upon that in this small-scaled experiment. Through this experiment, the reaction conditions were optimized to achieve $90\~100\%$ of separation. Therefore, it was concluded that when the functionalized magnetic beads is introduced to environmental processing, it is able to be adopted to the soil processing as well as the water processing.

Separation of Human Breast Cancer and Epithelial Cells by Adhesion Difference in a Microfluidic Channel

  • Kwon, Keon-Woo;Choi, Sung-Sik;Kim, Byung-Kyu;Lee, Se-Na;Lee, Sang-Ho;Park, Min-Cheol;Kim, Pil-Nam;Park, Suk-Ho;Kim, Young-Ho;Park, Jun-Gyul;Suh, Kahp-Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.140-150
    • /
    • 2007
  • A simple, label-free microfluidic cell purification method is presented for separation of cancer cells by exploiting difference in cell adhesion. To maximize the adhesion difference, three types of polymeric nanostructures (50nm pillars, 50nm perpendicular and 50nm parallel lines with respect to the direction of flow) were fabricated using UV-assisted capillary moulding and included inside a polydimethylsiloxane (PDMS) microfluidic channel bonded onto glass substrate. The adhesion force of human breast epithelial cells (MCF10A) and human breast carcinoma (MCF7) was measured independently by injecting each cell line into the microfluidic device followed by culture for a period of time (e.g., one, two, and three hours). Then, the cells bound to the floor of a microfluidic channel were detached by increasing the flow rate of medium in a stepwise fashion. It was found that the adhesion force of MCF10A was always higher than that of MCF cells regardless of culture time and surface nanotopography at all flow rates, resulting in a label-free detection and separation of cancer cells. For the cell types used in our study, the optimum separation was found for 2 hours culture on 50nm parallel line pattern followed by flow-induced detachment at a flow rate of $300{\mu}l/min$.

Experimental Investigation for the Shroud Separation in the Supersonic Flow (초음속 비행환경 조건에서의 슈라우드 분리시험 연구)

  • Kim, Jung-Young;Lee, Dong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.539-549
    • /
    • 2017
  • In this paper, experimental studies on the shroud separation were performed to investigate characteristics of the shroud separation at mach 3. Shroud separation tests were carried out in the vertical free-jet wind tunnel that is capable of testing separable structures. A shroud model was miniaturized to meet test objectives and test section dimensions of the wind tunnel. Pneumatic Locking and separation mechanisms were designed considering external force due to free stream. High speed cameras were used to record the shroud motion and unsteady shock patterns over the deploying shrouds during the shroud separation process. Also, unsteady pressures on the nose surface were measured by using the pressure sensors. Through the tests, the measurement data necessary for researches on the shroud separation technology were obtained. Shroud separation behaviors and characteristics of unsteady pressure on the nose surface for each external flow conditions were analyzed.

A Study on Material Separation of Waste Plastics Beer Bottle by Triboelectrostatic Separation (마찰하전형(摩擦荷電型) 정전선별(靜電選別)에 의한 폐플라스틱 맥주병 재질분리(材質分離)에 관한 연구(硏究))

  • Jeon, Ho-Seok;Delgermaa, Delgermaa;Baek, Sang-Ho;Park, Chul-Hyun;Choi, Woo-Zin
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • In this study, we carried out the research on triboelectrostatic separation for materials separation of PET & Nylon recovered to waste plastic beer bottle. From the research on charging characteristic for choice of charging materials, it was found that PMMA was optimum charging material to make high charging amount with opposite polarity for PET & Nylon in waste plastic beer bottle. Therefore, we manufactured a charger of pipe line and cyclone type using PMMA material for separation of PET and Nylon. At optimum test conditions that used PMMA pipe line and cyclone charger developed in this study, we developed a triboelectrostatic separation technique that can separate PET plastic up to grade of 99.6% and recovery of 88.2%. We established new separation technology that can recycle the PET and Nylon recovered from waste plastic beer bottle.

Separation of Cd(II) from Aqueous Solutions by A New Consecutive Process Consisting of Supported Liquid Membrane and Electrodialysis

  • Altin, Sureyya;Altin, Ahmet
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Supported liquid membrane process usually is used for recovering or enrichment of valuable metals in the industrial wastewater. But, even if the metals in the wastewater was separated with high chemical selectivity, it cannot be enough concentrated since separation performance of supported liquid membrane (SLM) process is limited by concentration gradient between feed solution and stripping solution. If metal concentration in the stripping solution to be enough low, transport of metal through membrane can be accomplishment constantly. Therefore, Electrodialysis (ED) has been placed after SLM process and the stripping solution of SLM was used as the feed solution for the ED process. Transport of ions in the solutions is successfully performed by ED process. Thus, the metal concentration in the stripping solution does not rise as to stop ion transport. Besides, valuable metals easily are concentrated by ED process for re-use. In this study, effects of operation parameters like initial Cd(II) concentration, HCl concentration in the feed solution of SLM and applied voltage are investigated on separation efficiency, flux and permeability of the both processes. As the feed solution concentration increased, all performance values has increased. When initial concentration of 100 mg/L is used, separation performances (SP) are 55% and 70%, for SLM and consecutive process, respectively. The best HCl concentration in the feed solution of SLM has determined as 2 M, in this conditions SP are 64% and 72%, for SLM and consecutive process, respectively. With increased of applied voltage on ED process, SP of the consecutive process has been raised from 72% to 83%. According to the obtained experimental data, consecutive process has better separation performance than SLM. When the separation performances of both processes were compared for the same operating conditions, it was determined higher the separation efficiency, permeability and flux values of the consecutive process, 8%, 9% and %10.6, respectively. Consequently, the use of the consecutive process increases the performance efficiency of both processes. The consecutive process studied has quite a good chemical separation efficiency, and enrichment capability. Moreover, this process requires few water and energy.

Coagulation-membrane separation hybrid treatment of secondary treated effluent for high efficiency phosphorus removal (하수 2차처리 방류수의 총인 고효율 처리를 위한 응집·막분리 혼성처리)

  • Choi, Wookjin;Lee, Byungha;Park, Joonhong;Cha, Hoyoung;Lee, Byungchan;Song, Kyungguen
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • This study investigated phosphorus removal from secondary treated effluent using coagulation-membrane separation hybrid treatment to satisfy strict regulation in wastewater treatment. The membrane separation process was used to remove suspended phosphorus particles after coagulation/settlement. Membrane separation with $0.2{\mu}m$ pore size of micro filtration membrane could reduce phosphorus concentration to 0.02 mg P/L after coagulation with 1 mg Al/L dose of polyaluminum chloride (PACl). Regardless of coagulant, the residual concentration of phosphorus decreased as the dose increased from 1.5 to 3.5 mg Al/L, while the target concentration of 0.05 mg P/L or less was achieved at 2.5 mg Al/L for the aluminum sulfate (Alum) and 3.5 mg Al/L for PACl. Moreover, alum showed better membrane flux as make bigger particles than PACl. Alum showed a 40% of flux decrease at 2.5 mg Al/L dose, while PACl indicated a 50% decrease of membrane flux even with a higher dose of 3.5 mg Al/L. Thus, alum was more effective coagulant than PACl considering phosphorus removal and membrane flux as well as its dose. Consequently, the coagulation-membrane separation hybrid treatment could be mitigate regulation on phosphorus removal as unsettleable phosphorus particles were effectively removed by membrane after coagulation.

Performance Verification of Separation Nut Type Non-explosive Separation Device for Cube Satellite Application (큐브위성 적용을 위한 분리너트형 비폭발식 구속분리장치 인증모델의 성능검증)

  • Oh, Hyun-Ung;Lee, Myeong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.827-832
    • /
    • 2013
  • Heating wire cutting type separation mechanism has been widely used for cube satellite applications due to its design constraints such as small size of $10cm{\times}10cm{\times}10cm$ and light weight of less than 1kg. In addition, usage of pyro technic device is not allowed for cube satellite application. The conventional methods have some disadvantages of relatively small mechanical constraint force and the system complexity for the multi-deployable systems. In this paper, a separation nut type non-explosive separation mechanism has been proposed and investigated. The effectiveness of the design has been verified through the qualification tests of the mechanism.