DOI QR코드

DOI QR Code

Gas Transport Properties of Soluble Polyimides Containing Alicyclic Dianhydride

지환족 다이안하이드라이드를 포함하는 용해성 폴리이미드의 기체투과특성

  • Kim, Eun Hee (Resources Separation & Recovery Research Group (RSRRG), Environmental Resources and Process Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, Chae Young (Resources Separation & Recovery Research Group (RSRRG), Environmental Resources and Process Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jeong-Hoon (Resources Separation & Recovery Research Group (RSRRG), Environmental Resources and Process Research Center, Korea Research Institute of Chemical Technology)
  • 김은희 (한국화학연구원 환경자원공정연구센터 자원분리회수그룹) ;
  • 박채영 (한국화학연구원 환경자원공정연구센터 자원분리회수그룹) ;
  • 김정훈 (한국화학연구원 환경자원공정연구센터 자원분리회수그룹)
  • Received : 2014.02.18
  • Accepted : 2014.03.18
  • Published : 2014.04.30

Abstract

In this work, soluble polyimides were synthesized and characterized from 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and two diamines such as 4,4'-diaminodiphenylether (ODA), 1,4-phenylenediamine (p-PDA). Their thermal properties were analyzed with differential scanning calorimeter (DSC). The gas permeability coefficients (P) and ideal selectivity for $CH_4$ and $CO_2$ of the prepared polyimide membranes were measured with a time-lag apparatus. DOCDA-ODA, DOCDA-p-PDA showed good permeability and selectivity; the permeabilities of $CO_2$ was 6.10, 0.74 barrers and the selectivity of $CO_2/CH_4$ were 67.03, 46.25, respectively. Therefore, DOCDA-ODA showed good possibility as gas separation membrane.

본 연구에서는 용해성 폴리이미드 합성을 위해 지환족(alicyclic) dianhydride 단량체인 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA)와 diamine으로는 4,4'-diaminodiphenylether (ODA), 1,4-phenylenediamine (p-PDA)를 사용하여 두 가지 폴리이미드를 제조한 후 그 특성을 고찰하고 기체투과특성을 알아보았다. 제조된 폴리이미드는 FT-IR을 통해 합성이 성공적으로 이루어졌음을 확인하였고 DSC를 통하여 열적 안정성을 알아보았다. 제조된 폴리이미드막의 $CH_4$$CO_2$에 대한 기체투과계수(P)와 이상 선택도는 time-lag 장비로 측정하였다. 그 결과, DOCDA-ODA, DOCDA-p-PDA의 경우 $CO_2$의 투과도는 각각 6.10, 0.74 barrer로 나타났고 $CO_2/CH_4$의 선택도는 67.03, 46.25의 결과를 나타내었다. 두 가지 폴리이미드 중 DOCDA-ODA의 경우 폴리이미드 재료의 특성인 우수한 투과도 및 선택도로 새로운 기체분리막으로서의 이용가능성을 나타내었다.

Keywords

References

  1. M. Mulder, "Basic Principles of Membrane Technolo gy", Kluwer Academic Publisher, Dordrecht (1991).
  2. W. S. W. Ho and K. K. Sirkar, "Membrane Handbook", Van Nostrand Reinhold, New York (1992).
  3. D. R. Paul and Y. Yampol'skii, "Polymeric Gas separation Membranes", CRC Press. London (1990).
  4. R. E. Kesting and A. K. Fritzsche, "Polymeric Gas Separation Membranes", John Wiley & Sons., New York (1993).
  5. S. A. Stern, "Polymers for gas separations: the next decade", J. Membr. Sci., 94, 1 (1994). https://doi.org/10.1016/0376-7388(94)00141-3
  6. K. Haraya and S. T. Hwang, "Permeation of oxygen, argon and nitrogen through polymer membranes", J. Membr. Sci., 71, 13 (1992). https://doi.org/10.1016/0376-7388(92)85002-Z
  7. W. M. Lee, "Selection of barrier materials from molecular structure", epolym. Eng. sci., 20, 65 (1980). https://doi.org/10.1002/pen.760200111
  8. J. A. Moor and D. R. Robello, "Curable, thermally stable poly(enaminonitriles)", Macromolecules, 22, 1084 (1989). https://doi.org/10.1021/ma00193a015
  9. K. Matsumoto and P. Xu, "Gas permeation properties of hexafluoro aromatic polyimides", J. Appl. Polym. Sci., 47, 1961 (1993). https://doi.org/10.1002/app.1993.070471106
  10. M. R. Coleman and W. J. Koros, "Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications", J. Membr. Sci., 50, 285 (1990). https://doi.org/10.1016/S0376-7388(00)80626-2
  11. H. Yamamoto, Y. Mi, S. A. Stern, and A. K. St. Clair, "Structure/permeability relationships of polyimide membranes. II", J. Polym. Sci. Part B: Polym. Phys., 28, 2291 (1990). https://doi.org/10.1002/polb.1990.090281210
  12. H. Y. Ha, S. W. Nam, and S. A. Hong, "Fabrication and Application of Inorganic Membranes", Membrane Journal, 9, 63 (1993).
  13. T. M. Moy and J. E. McGrath, "Synthesis of hydroxyl- containing polyimides derived from 4,6-diamino- resorcinol dihydrochloride and aromatic tetracarboxylic dianhydrides", J. Polym. Sci., Part A: Polym. Chem., 32, 1903 (1994). https://doi.org/10.1002/pola.1994.080321012
  14. S. Itamara, M. Yamada, S. Tamura, T. Matsumoto, and T. Kurosaki, "Soluble polyimides with polyalicyclic structure. 1. Polyimides from bicyclo[2.2.2] oct-7-ene-2-exo,3-exo,5-exo,6-exo-tetracarboxylic 2,3:5,6-dianhydrides", Macromolecules, 26, 3490 (1993). https://doi.org/10.1021/ma00066a005
  15. M. Kusama, T. Matsumoto, and T. Kurosaki, "Soluble Polyimides with Polyalicyclic Structure.3. Polyimides from (4arH,8acH)-Decahydro-1t,4t:5c,8cdimethanonaphthalene- 2t,3t,6c,7c-tetracarboxylic 2,3:6,7-Dianhydride", Macromolecules, 27, 1117 (1994). https://doi.org/10.1021/ma00083a008
  16. M. Yamada, M. Kusama, T. Matsumoto, and T. Kurosaki, "Soluble polyimides with polyalicyclic structure. 2. Polyimides from bicyclo[2.2.1]heptane- 2-exo-3-exo- 5-exo-6-exo-tetracarboxylic 2,3:5,6-dianhydride", Macromolecules, 26, 4961 (1993). https://doi.org/10.1021/ma00070a034
  17. N. Ariga, Jpn. KoKai Tokkyo Koho 57-121035, 57-177050 (1982).
  18. S. H. Hsiao, C. P. Yang, and C. K. Lin, "Syntheses and Properties of Polyimides based on Bis(p-aminophenoxy) biphenyls", J. Polym. Res., 2, 1 (1995). https://doi.org/10.1007/BF01493428
  19. J. N. Barsema, G. C. Kapantaidakis, N. F. A. van der Vegt, G. H. Koops, and M. Wessling, "Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDATDI/ MDI co-polyimide", J. Membr. Sci., 216, 195 (2003). https://doi.org/10.1016/S0376-7388(03)00071-1
  20. J. J. Krol, M. Boerrigter, and G. H. Koops, "Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments", J. Membr. Sci., 184, 275 (2001). https://doi.org/10.1016/S0376-7388(00)00640-2
  21. E.I. DUPONT DE NEMOURS AND COMPANY, US, 6-142237 (1994).
  22. C. Hulubei, E. Hamciuc, and M. Bruma, "New polyimides based on Epiclon", Rev. Roum. Chim., 52, 1063 (2007).
  23. K. Xie, J. G. Liu, H. W. ZHOU, S. Y. Zhang, M. H. He, and S. Y. Yang, "Soluble fluoro-polyimides derived from 1,3-bis(4-amino-2-trifluoromethyl- phen oxy) benzene and dianhydrides", Polymer, 42, 7267 (2001). https://doi.org/10.1016/S0032-3861(01)00138-0
  24. S. S. Hosseini and T. S. Chung, "Carbon membranes from blends of PBI and polyimides for $N_{2}/CH_{4}$ and $CO_{2}/CH_{4}$ separation and hydrogen purification", J. Membr. Sci., 328, 174 (2009). https://doi.org/10.1016/j.memsci.2008.12.005
  25. M. D. Guiver, G. P. Robertson, Y. Dai, F. Bilodeau, Y. S. Kang, K. J. Lee, J. Y. Jho, and J. O. Won, "Structural Characterization and Gas-Transport Properties of Brominated Matrimid Polyimide", J. Polym. Sci., Part A: Polym. Chem., 40, 4193 (2002). https://doi.org/10.1002/pola.10516
  26. B. D. Reid, F. A. Ruiz-Trevino, I. H. Musselman, K. J. Balkus, and J. P. Ferraris, "Gas Permeability Properties of Polysulfone Membranes Containing the Mesoporous Molecular Sieve MCM-41", Chemistry of materials, 13, 2366 (2001). https://doi.org/10.1021/cm000931+