• Title/Summary/Keyword: Separation Bubble

Search Result 140, Processing Time 0.018 seconds

Numerical Computation of Laminar Flow over a Backward Facing Step (Beckward Facing Step의 층류 유동 수치계산)

  • Van, Suck-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.150-161
    • /
    • 1993
  • 원초변수를 이용한 Navier-Stokes 방정식의 수치계산기법을 개발하고, 이를 응용하여 backward facing step의 층류 유동을 계산하였다. 직교좌표계에서의 비압축성 Navier-Stokes방정식을 풀기위해 시간과 공간항을 2차 정도의 유한 차분을 사용하여 이산화하였고 비교차격자계를 사용하여 양해법으로 수치 계산하였다. 운동량방정식과 연속방정식으로 부터 유도된 압력방정식(pressure-poisson equation)을 이용하여 무발산 조건을 만족시켰ㄲ다. Backward facing step의 층류 유동을 100.$\leq$R$_e$$\leq$1000 범위에 대해서 수치 계산하였으며 실험결과와 잘 일치하는 결과를 구할 수 있었다. 특히 step뒤에서 생기는 박리구간의 길이는 다른 계산결과들보다 실험치에 가까운 값을 얻을 수 있었으며, Re가 600보다 클때는 위쪽 벽에 또 다른 박리 유동이 발생되는 현상이 예측되었다.

  • PDF

An Investigation of Lattice Boltzmann Multi-phase Model and it Application (래티스볼츠만 다상류 모델의 검토 및 응용)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

Flow Visualization Study around the Distributor of Plate-fin Heat Exchangers (판형-핀 열교환기 분배면의 유동 가시화 연구)

  • Jeong, Tae-Sik;Park, Seung-Ha;Kim, Chang-Su;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.37-41
    • /
    • 2012
  • Plate-fin heat exchanger is a kind of compact heat exchangers with a good performance in heat transfer. It is widely used in various engineering fields such as aerospace, chemical and biomedical industries. Quantitative and qualitative flow visualization study were performed using the water model of commercial plate-fin heat exchanger with header angles of $30^{\circ}$. The Reynolds number was 100. Conventional digital particle image velocimetry was used to measure the instantaneous velocity fields of the header region and the flow visualization using dye injection and hydrogen bubble method were applied to capture the qualitative flow characteristics. The results showed the existence of separation flow region at the junction area and the bottom wall of the exit region.

Numerical Study on the Droplet Flows in a Cross-Junction Channel Using the Lattice Boltzmann Method (Lattice Boltzmann 법을 이용한 Cross-Junction 채널 내의 droplet 유동에 관한 수치해석적 연구)

  • Park, Jae-Hyoun;Suh, Young-Kweon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.407-410
    • /
    • 2006
  • This study describes a simulation of two-dimensional bubble forming and motion by the Lattice Boltzmann Method with the phase field equation. The free energy model is used to treat the interfacial force and deformation of binary fluids system, drawn into a T-junction the micro channel. A numerical simulation of a binary flow in a cross-junction channel is carried out by using the parallel computation method. The aim in this investigation is to examine the applicability of LBM to numerical analysis of binary fluid separation and motion in the micro channel.

  • PDF

A Study on the Effect of Fin Pitch of Offsets Strip Fin on Heat Transfer of High Prandtl Fluid (옵셋 스트립 휜의 휜피치가 고 Prandtl 유체 열전달 특성에 미치는 영향)

  • 강덕종;양대일;전승환;정형호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.83-89
    • /
    • 2002
  • In the present study, heat transfer characteristics of oil flow over offset strip fins were predicted by the numerical methods. Oil flow in the plate-fin passage was idealized by 2 dimensions. The flow patterns and heat transfer characteristics were predicted in details. Numerical results shows that the average convective heat transfer coefficients are almost independent on the raws of fins and affected by fin pitches. At the rear face of fin, there exists minimum point of heat transfer coefficients where stream are separated from the fin surfaces. The convective heat transfer coefficients were effected by separation bubbies which appeared at the wake region of offset strip fins.

Experimental Investigation of Two-dimensionality of Flow around the Vertical Fence Submerged in a Turbulent Boundary Layer (난류 경계층에 잠긴 수직벽 주위 유동의 2차원성 연구)

  • Cha, Jae-Eun;Kim, Hyoung-Woo;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • An experimental investigation of the flow around a vertical fence was carried out using a PIV velocity field measurement technique. The vertical fence was embedded in a turbulent boundary layer. The instantaneous velocity fields measured at cross-sectional planes reveal complex longitudinal vortices that vary in size and strength, developing from the upstream location. In the instantaneous vorticity and velocity field data, the shear flow separated from the fence top is highly turbulent and shows unsteady flow characteristics. The topography of the ensemble averaged velocity fields, especially the separation bubble formed behind the fence, shows that the spatial distributions of streamwise velocity (U) and vertical (V) are symmetric, the spanwise velocity (W) is skew-symmetric with respect to the central xy-plane(z=0).

Quantitative Visualization of Inlet Flow of the Centrifugal Blower (원심 블로어 입구 유동의 정량적 가시화 연구)

  • Jeong, Tae-Sik;Tu, Xin Cheng;Kim, Sung-Jun;Jang, Hwan-Young;Kim, Jin-Kwang;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2013
  • The inlet flow of centrifugal blower were quantitatively visualized using particle image velocimetry. Because the centrifugal blower system is one of the key parts of EV battery cooling system, the quantitative information of flow field of centrifugal blower is important to design and optimize the cooling system. Two types of inlet parts were used in this study. One is the straight inlet and the other is a bended one. The results showed the flow asymmetry exists in the straight model due to the pressure difference in the blower. In case of the bended one, the separation bubble and the increase of head loss appeared compared with the straight model.

A Study on the Heat Transfer Characteristics of Oil Flow over Offset Strip Fins (옵셋 스트립 휜에서 오일유동의 열전달 특성에 관한 연구)

  • 양대일;정형호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1134-1140
    • /
    • 2001
  • In the present study, heat transfer characteristics of oil flow over offset strip fins were predicted by the numerical methods. Oil flow in the plate-fin passage was idealized by 2 dimension. Power law scheme and SIMPLE algorithm were used for convective diffusion formulation and pressure term respectively. Governing equations were discretized by control volume formulation. The flow patterns and heat transfer were predicted in details. The convective heat transfer coefficients were affected by separation bubbles which appeared at the wake region of offset strip fins.

  • PDF

2D 플라잉 디스크의 피칭 운동에 따른 비정상 유동 해석

  • Park, Da-Un;Kim, Tae-Uk
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.566-570
    • /
    • 2016
  • 본 연구에서는 플라잉 디스크를 이용하여 Pitching 운동 조건에서의 공력특성을 해석하였다. 본 해석에서 사용한 플라잉 디스크 모델은 프리원 151_140이며, 해석자로는 KFLOW_EDISON_2D_3DOF를 사용하였다. Pitching 운동이 있는 경우 받음각의 변화에 따른 공력특성을 비교 분석하였다. 기준 받음각의 변화에 따라 형상 아랫면과 뒷전 부근에 실속 와류가 다른 형태로 생겨 플라잉 디스크의 공력 특성에 영향을 준다는 것을 확인하였다. 또한, 기준 받음각이 증가 할수록 강한 실속 와류가 발생함을 알 수 있다.

  • PDF

Experimental and Numerical Study on the Binary Fluid Flows in a Micro Channel (마이크로 채널 내의 이상유동에 대한 실험 및 수치해석적 연구)

  • Park, Jae-Hyoun;Heo, Hyeung-Seok;Suh, Young-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.86-91
    • /
    • 2006
  • In this parer, we present the bubble forming and motion in the micro channel by using the two-dimensional numerical computation and experiment. In the numerical computation, The Lattice Boltzmann method(LBM) and free-energy model is used to treat the interfacial force and deformation of binary fluid system, drawn in to a micro channel and a numerical simulation is carried out by using the parallel computation method. The urn in this investigation is to examine the applicability of LBM to numerical analysis and experimental method of binary fluid separation and motion in the micro channel.

  • PDF