• Title/Summary/Keyword: Separation Bolt

Search Result 38, Processing Time 0.062 seconds

A Study of Interpretation of Separation Behavior in Gas Expansion Separation(GES) Bolt (가스팽창분리형 볼트 분리거동 해석 연구)

  • Lee Young Jo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • The present work has been developed the study of interpretation of separation behavior in gas expansion separation(GES) bolt which has the separation characteristics without fragmentation and minimum pyre-shock during the operation of the explosive bolt. In order to obtain the performance of minimum pyre-shock, the present work used non-compressive material instead of separation explosives. The use of the interpretation processor could be extensively helped to design the shape and the amount of explosives in the explosive bolt having complex geometry, and to analyse the separation behavior during the operation. It is also proved that the GES bolt is the most suitable the separation system necessary to minimum pyre-shock and non fragmentation compare with others.

The Interpretation of Separation Mechanism of Ridge-Cut Explosive Bolt Using Software Simulation Program

  • Lee, Y. J.;Kim, D. J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.532-543
    • /
    • 2004
  • The present work have been developed the interpretation processor including the behavior of material failure and the separation phenomena under transient dynamic loading (the operation of explosive bolt) using AUTODYN V4.3, SoildWork 2003 and TrueGrid V2.1 programs. It has been demonstrated that the interpretation in ridge-cut explosive bolt under dynamic loading condition should be necessary to the appropriate failure model and the basic stress of bolt failure is the principal stress. The use of this interpretation processor developing the present work could be extensively helped to design the shape and the amount of explosives in the explosive bolt having a complex geometry. It is also proved that the interpretation processor approach is an accurate and effective analysis technique to evaluate the separation mechanism in explosive bolts.

  • PDF

A Study of Interpretation of Separation Behavior in Gas Expansion Separation(GES) Bolt (가스팽창분리형 볼트 분리거동 해석 연구)

  • Kim Dong Jin;Lee Yeung Jo;Kang Won Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.95-98
    • /
    • 2004
  • The present work has been developed the study of interpretation of separation behavior in gas expansion separation(GES) bolt which has the separation characteristic without fragmentation and minimum pyre-shock during the operation of the explosive bolt. In order to obtain the performance of minimum pyro-shock, the present work used non-compressive material instead of separation explosives. The use of the interpretation processor could be extensively helped to design the shape and the amount of explosives in the explosive bolt having complex geometry, and to analyse the separation behavior during the operation. It is also proved that the GES bolt is the most suitable the separation system necessary to minimum pyro-shock and non fragmentation compare to others.

  • PDF

The Study of the Characteristic of Pyrotechnic Separation Devices Using Missile System and Space Craft (우주발사체 및 미사일 시스템에 이용되는 파이로테크닉 분리장치의 특성에 관한 연구)

  • Lee, Yeung-Jo;Kim, Dong-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.208-211
    • /
    • 2007
  • Separation Devices have two functions. These two functions are to bond and to separate two bodies. This paper is about separation devices which use explosives to separate their bodies. Explosive bolt is separated with two bodies when the explosives in the body detonated. The good things of explosive bolt are that it has simple operational system and it is made of few parts. But it has side effects; fragment and pyre-shock. To avoid these side effects gas expansion separation(GES) bolt and pressure cartridge actuation separation(PAS) devices are invented. These use pressure to separate their bodies. The pressure is generated when explosives are burned. But the sizes of PAS devices are bigger than explosive bolts. And GES bolt has a mechanically lower bonding ability than that of explosive bolt. When you design separation devices, it is recommended to know operational system and characteristics of separation devices, to design best one.

  • PDF

A Study of Separartion Mechanism in Ball Type Bolt Used the Pressure Cartridge (압력카트리지를 이용한 볼타입 볼트 분리현상 연구)

  • Lee, Yeung-Jo;Koo, Song-Hae;Jang, Hong-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.293-296
    • /
    • 2008
  • Most of the guided weapons have been kept and transferred at the launching tube and fired in case of necessity in these day. Launching tube is a kind of case to protect the guided weapons from external environments and conducted as a guide when they are fired. When we attached the guided weapons to launching tube we usually has used explosive bolt. Explosive bolts have been used explosives when they had to be separated. But when they are separated there are some bad effects; a flame, fragments and pyro-shock. Because of these bad effects there are many restriction to use bolt as joining devices to precision guided weapons. To solve these problems, it has been invented ball type bolt. The present work was represented quantitively the margin of separation safty and separation mechanism in ball type bolt to analyse the dynamic separation test. Unlike explosive bolt, ball type bolt is separated without a flame, fragments and pyro-shock. And it also has a good mechanical properties as much as those of explosive bolt.

  • PDF

Study of Separation Mechanism According to the Constraint Condition of Explosive Bolts (폭발볼트의 구속환경에 따른 분리메커니즘 연구)

  • Jeong, Donghee;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Explosive bolt is one of separation device that uses high explosive charge, and is separated by pressure formed by an explosion and the resulting shock waves. Explosive bolt having such a mechanism would have to be designed to minimize shock and debris formation generated during separation. In this study, separation tests were carried out with distance as variable for restraining the explosive bolt (Air Gap). Bolt release and its separating shape with variation of air gap is observed, and we used accelerometer to measure the shock wave transmitted through a bound object. In addition, separation behavior of explosive bolt is analyzed using ANSYS AUOTODYN program. By comparing the results of previously performed experiments and analysis, we could confirm the effects of air gap to the release behavior of explosive bolt, and decide optimum constraining environment for specific separation bolts.

Bolt Loosening Analysis under Transverse Vibration for Design of Reliable Pyrotechnic Separation Nut (신뢰성 있는 파이로테크닉 분리 너트 설계를 위한 진동 시 볼트 풀림 해석)

  • Choi, Jae Young;Woo, Jeongmin;Kang, Dahoon;Kim, Jeong Ho;Cho, Jin Yeon;Jang, Seung-gyo;Yang, Hee Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1004-1011
    • /
    • 2018
  • Recently, pyrotechnic separation nut has attracted a considerable attention because of its shock reduction effect among various pyrotechnic mechanical devices. However, its bolt loosening behavior under transverse vibration has not been studied sufficiently, since segmented nuts are utilized instead of conventional nut in pyrotechnic separation nut. With the background, bolt loosening analyses are carried out referring to Junker vibration test. The analysis procedure consists of two steps. The first step is the bolt fastening step, screwing the bolt by fastening torque. The second step is the bolt loosening step under transverse vibration. Through the procedure, bolt loosening behaviors are obtained, and the effect of clearance on loosening behavior is closely investigated for reliable design of pyrotechnic separation nut.

Design and Separation Characteristics of an Explosive Bolt (모서리 분리형 폭발볼트 설계인자 및 분리특성)

  • 김동진;이응조
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.243-248
    • /
    • 2001
  • The present work is described the design factors and separation mechanism of ridge-cut explosive bolt in order to optimize the stage separation characteristics. Characteristics of test samples would differ depend on the detonating devices, the shape and size of bolt body, the amount of loading explosives, and the confinment conditions of bolt. Based on the results from these experimental factors, it appears to optimal condition of ridge-cut explosive that the amount of loading explosive seems to be near 110mg of RDX, the height of loading explosive is 3.5mm, the thickness of bolt is 3.9mm, and the degree of ridge is approximately $120^{\circ}$

  • PDF

Numerical Analysis and Simplified Mathematical Modeling of Separation Mechanism for the Ball-type Separation Bolt (볼타입 분리볼트 분리 메커니즘의 수치해석 및 간략화 모델링)

  • Hwang, Dae-Hyun;Lee, Juho;Han, Jae-Hung;Lee, Yeungjo;Kim, Dongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.63-70
    • /
    • 2016
  • The pyrotechnic separation devices are widely used in space systems and guided weapons during the launching and operations, however, they generate intensive pyroshock and fragments that can cause critical damages or the malfunction of electric devices onboard. There have been proposed many types of alternative devices to avoid pyro-induced problems since 1960's. A ball-type separation bolt is the one of alternative Pyrotechnic Mechanical Devices (PMD). In this study, the detail separation behavior of the ball-type separation bolt is analyzed using ANSYS AUTODYN. A simplified one-dimensional mathematical model, consisting of a combustion model and 5-stages of differential equation of motions, is also established to effectively describe the entire separation process.

A Study of Separation Mechanism in Ball Type Separated Bolt (볼타입 분리볼트의 분리현상 연구)

  • Lee, Yeung-Jo;Koo, Song-Hoe;Jang, Hong-Bin;Lee, Bang-Eop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.62-67
    • /
    • 2011
  • Launching tube is a kind of case to protect the guided weapons from external environments and conducted as a guide when they are fired. The guided weapons have been firmly kept at the launching tube and transferred, and would be separated at the required time when they are fired To meet the aim, it has been used explosive bolts which are reliable and efficient mechanical fastening devices having the special feature of a built-in release. The disadvantage of explosive bolt lies in that it is based on the high explosive effect of a pyrotechnic charge. When the explosive bolt is ignited, there are some bad effects; a flame, fragments and pyro-shock. Because of these bad effects there are many restriction to use bolt as joining devices to precision guided weapons. To solve these problems, the aim of the present work is to invent the ball-type separation bolt which is a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. A standard pressure cartridge can moreover be easily integrated inside the device according to the present work and this with no modification to its structure. The present work was represented quantitatively the margin of separation safety and analysed separation mechanism in ball type separating bolt to perform the dynamic separation test.