• Title/Summary/Keyword: Sentence Generation

Search Result 106, Processing Time 0.023 seconds

Multi-Document Summarization Method Based on Semantic Relationship using VAE (VAE를 이용한 의미적 연결 관계 기반 다중 문서 요약 기법)

  • Baek, Su-Jin
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.341-347
    • /
    • 2017
  • As the amount of document data increases, the user needs summarized information to understand the document. However, existing document summary research methods rely on overly simple statistics, so there is insufficient research on multiple document summaries for ambiguity of sentences and meaningful sentence generation. In this paper, we investigate semantic connection and preprocessing process to process unnecessary information. Based on the vocabulary semantic pattern information, we propose a multi-document summarization method that enhances semantic connectivity between sentences using VAE. Using sentence word vectors, we reconstruct sentences after learning from compressed information and attribute discriminators generated as latent variables, and semantic connection processing generates a natural summary sentence. Comparing the proposed method with other document summarization methods showed a fine but improved performance, which proved that semantic sentence generation and connectivity can be increased. In the future, we will study how to extend semantic connections by experimenting with various attribute settings.

A Design of Japanese Analyzer for Japanese to Korean Translation System (일반 번역시스탬을 위한 일본어 해석기 설계)

  • 강석훈;최병욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.136-146
    • /
    • 1995
  • In this paper, a Japanese morphological analyzer for Japanese to Korean Machine Translation System is designed. The analyzer reconstructs the Japanese input sentence into word phrases that include grammatical and dictionary informations. Thus we propose the algorithm to separate morphemes and then connect them by reference to a corresponding Korean word phrases. And we define the connector to control Japanese word phrases It is used in controlling the start and the end point of the word phrase in the Japanese sentence which is without a space. The proposed analyzer uses the analysis dictionary to perform more efficient analysis than the existing analyzer. And we can decrease the number of its dictionary searches. Since the analyzer, proposed in this paper, for Japanese to Korean Machine Translation System processes each word phrase in consideration of the corresponding Korean word phrase, it can generate more accurate Korean expressions than the existing one which places great importance on the generation of the entire sentence structure.

  • PDF

Design of Sentence Semantic Model for Cause-Effect Graph Automatic Generation from Natural Language Oriented Informal Requirement Specifications (비정형 요구사항으로부터 원인-결과 그래프 자동 발생을 위한 문장 의미 모델(Sentence Semantic Model) 설계)

  • Jang, Woo Sung;Jung, Se Jun;Kim, R.Young Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.215-219
    • /
    • 2020
  • 현재 한글 언어학 영역에서는 많은 언어 분석 연구가 수행되었다. 또한 소프트웨어공학의 요구공학 영역에서는 명료한 요구사항 정의와 분석이 필요하고, 비정형화된 요구사항 명세서로부터 테스트 케이스 추출이 매우 중요한 이슈이다. 즉, 자연어 기반의 요구사항 명세서로부터 원인-결과 그래프(Cause-Effect Graph)를 통한 의사 결정 테이블(Decision Table) 기반 테스트케이스(Test Case)를 자동 생성하는 방법이 거의 없다. 이런 문제를 해결하기 위해 '한글 언어 의미 분석 기법'을 '요구공학 영역'에 적용하는 방법이 필요하다. 본 논문은 비정형화된 요구사항으로부터 테스트케이스 생성하는 과정의 중간 단계인 요구사항에서 문장 의미 모델(Sentence Semantic Model)을 자동 생성하는 방법을 제안 한다. 이는 요구사항으로부터 생성된 원인-결과 그래프의 정확성을 검증할 수 있다.

  • PDF

Learning Conversation in Conversational Agent Using Knowledge Acquisition based on Speech-act Templates and Sentence Generation with Genetic Programming (화행별 템플릿 기반의 지식획득 기법과 유전자 프로그래밍을 이용한 문장 생성 기법을 통한 대화형 에이전트의 대화 학습)

  • Lim Sungsoo;Hong Jin-Hyuk;Cho Sung-Bae
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.351-368
    • /
    • 2005
  • The manual construction of the knowledge-base takes much time and effort, and it is hard to adjust intelligence systems to dynamic and flexible environment. Thus mental development in those systems has been investigated in recent years. Autonomous mental development is a new paradigm for developing autonomous machines, which are adaptive and flexible to the environment. Learning conversation, a kind of mental development, is an important aspect of conversational agents. In this paper, we propose a learning conversation method for conversational agents which uses several promising techniques; speech-act templates and genetic programming. Knowledge acquisition of conversational agents is implemented by finite state machines and templates, and dynamic sentence generation is implemented by genetic programming Several illustrations and usability tests how the usefulness of the proposed method.

  • PDF

Story Generation Method using User Information in Mobile Environment (모바일 환경에서 사용자 정보를 이용한 스토리 생성 방법)

  • Hong, Jeen-Pyo;Cha, Jeong-Won
    • Journal of Internet Computing and Services
    • /
    • v.14 no.3
    • /
    • pp.81-90
    • /
    • 2013
  • Mobile device can get useful user information, because users have always this device. In this paper, we propose automatically story generation method and user topic extraction using user information in mobile environment. Proposed method is follows: (1) We collect user action information in mobile device. Then, (2) we extract topics from collected information. (3) For the results of (2), we determine episodes for one day. Then, (4) we generate sentences using sentence templates and we compose stories which have theme-based or time-based. Because proposed method is simpler than previous method, proposed method can work only in mobile device. There's no room to leak user information. And proposed method is expressed more informative than previous method, because proposed method is provided sentence-based result. Extracted user-topic, a result of our method, can use to analyze user action and user preference.

A study on Implementation of English Sentence Generator using Lexical Functions (언어함수를 이용한 영문 생성기의 구현에 관한 연구)

  • 정희연;김희연;이웅재
    • Journal of Internet Computing and Services
    • /
    • v.1 no.2
    • /
    • pp.49-59
    • /
    • 2000
  • The majority of work done to date on natural language processing has focused on analysis and understanding of language, thus natural language generation had been relatively less attention than understanding, And people even tends to regard natural language generation CIS a simple reverse process of language understanding, However, need for natural language generation is growing rapidly as application systems, especially multi-language machine translation systems on the web, natural language interface systems, natural language query systems need more complex messages to generate, In this paper, we propose an algorithm to generate more flexible and natural sentence using lexical functions of Igor Mel'uk (Mel'uk & Zholkovsky, 1988) and systemic grammar.

  • PDF

Development of Japanese to Korean Machine Translation System ATOM Using Personal Computer II - Syntactic/Semantic Analysis and Generation Process - (PC를 이용한 일$\cdot$한 번역 시스템 ATOM의 개발에 관한 연구 ( II ) - 구문해석과 생성과 정을 중심으로 -)

  • Kim, Young-Sum;Kim, Han-Woo;Choi, Byung-Uk
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1193-1201
    • /
    • 1988
  • In this paper, we describe the syntactic and semantic parsing methods which use the case frames. The case structures based on obligatory cases of verbs. And, we use a small set of partial-garammar rules based on simple sentence to represent such case structures. Also, we enhance the efficiency by constructing independent procedure for particle classification and ambiguity resolution of major particle considering the importance of Japanese particle process in the generation. And we construct the generation table considering the combination possibility between the verbs and auxiliary verbs for processing the termination phrase. Therefore we can generate more natural translated sentence according to unique decision with information of syntactic analysis and simplify the generating process.

  • PDF

Maximum Likelihood-based Automatic Lexicon Generation for AI Assistant-based Interaction with Mobile Devices

  • Lee, Donghyun;Park, Jae-Hyun;Kim, Kwang-Ho;Park, Jeong-Sik;Kim, Ji-Hwan;Jang, Gil-Jin;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4264-4279
    • /
    • 2017
  • In this paper, maximum likelihood-based automatic lexicon generation using mixed-syllables is proposed for unlimited vocabulary voice interface for East Asian languages (e.g. Korean, Chinese and Japanese) in AI-assistant based interaction with mobile devices. The conventional lexicon has two inevitable problems: 1) a tedious repetition of out-of-lexicon unit additions to the lexicon, and 2) the propagation of errors during a morpheme analysis and space segmentation. The proposed method provides an automatic framework to solve the above problems. The proposed method produces a level of overall accuracy similar to one of previous methods in the presence of one out-of-lexicon word in a sentence, but the proposed method provides superior results with the absolute improvements of 1.62%, 5.58%, and 10.09% in terms of word accuracy when the number of out-of-lexicon words in a sentence was two, three and four, respectively.

Effectiveness of Fuzzy Graph Based Document Model

  • Aswathy M R;P.C. Reghu Raj;Ajeesh Ramanujan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2178-2198
    • /
    • 2024
  • Graph-based document models have good capabilities to reveal inter-dependencies among unstructured text data. Natural language processing (NLP) systems that use such models as an intermediate representation have shown good performance. This paper proposes a novel fuzzy graph-based document model and to demonstrate its effectiveness by applying fuzzy logic tools for text summarization. The proposed system accepts a text document as input and identifies some of its sentence level features, namely sentence position, sentence length, numerical data, thematic word, proper noun, title feature, upper case feature, and sentence similarity. The fuzzy membership value of each feature is computed from the sentences. We also propose a novel algorithm to construct the fuzzy graph as an intermediate representation of the input document. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric is used to evaluate the model. The evaluation based on different quality metrics was also performed to verify the effectiveness of the model. The ANOVA test confirms the hypothesis that the proposed model improves the summarizer performance by 10% when compared with the state-of-the-art summarizers employing alternate intermediate representations for the input text.