Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.463-465
/
2005
문서분류 시 문서의 내용을 표현하기 위한 자질로서 사용되는 단어의 출현빈도정보는 해당 문서의 주제어를 표현하기에 취약한 점을 갖고 있다. 즉, 키워드가 문장에서 어떠한 목적(의미)으로 사용되었는지에 대한 정보를 표현할 수가 없고, 문장 간의 응집도가 강한 문장에서 추출되었는지 아닌지에 대한 정보를 표현할 수가 없다. 따라서, 이 정보로부터 문서분류를 하는 것은 그 정확도에 있어서 한계를 갖게 된다. 본 논문에서는 이러한 문서표현의 문제를 해결하기위해, 키워드를 선택할 때, 자질로서 문장의 역할(주어)정보를 추출하여 가중치 부여방식을 통하여 주어주도정보량을 추출하였다. 또한, 자질로서 문장 내 키워드들의 동시출현빈도 정보를 추출하여 문장 간 키워드들의 연관성정도를 시소러스에 담아내었다. 그리고, 이로부터 응집도 정보를 추출하였다. 이 두 정보의 통합으로부터 문서 주제어를 결정함으로서, 문서분류를 위한 주제어 추출 시 불필요한 키워드의 삽입을 줄이고, 동시 출현하는 키워드들에 대한 선택 기준을 제공하고자 하였다. 실험을 통해 한번 출현한 키워드라도, 문장을 주도하는 주어로서 사용될 경우와 응집도 가중치가 높을 경우에 주제어로서의 선택될 가능성이 향상되고, 문서분류를 위해 좀 더 세분화된 키워드 점수화가 가능함을 확인하였다. 따라서, 선택된 주제어가 문서분류의 정확도에 있어서 향상을 가져올 수 있을 것으로 기대한다.
In this study, comments on restaurants, movies, and mobile devices, as well as tweet messages regardless of specific domains were analyzed for sentimental information content. We proposed a system for extraction of objects (or aspects) and opinion words from each sentence and the subsequent evaluation. For the sentiment analysis, we conducted a comparative evaluation between the Structural SVM algorithm and the Latent Structural SVM. As a result, the latter showed better performance and was able to extract objects/aspects and opinion words using VP/NP analyzed by the dependency parser tree. Lastly, we also developed and evaluated the sentiment detector model for use in practical services.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.6
/
pp.1778-1799
/
2022
Automatic text summarization is a procedure that packs enormous content into a more limited book that incorporates significant data. Malayalam is one of the toughest languages utilized in certain areas of India, most normally in Kerala and in Lakshadweep. Natural language processing in the Malayalam language is relatively low due to the complexity of the language as well as the scarcity of available resources. In this paper, a way is proposed to deal with the text summarization process in Malayalam documents by training a model based on the Support Vector Machine classification algorithm. Different features of the text are taken into account for training the machine so that the system can output the most important data from the input text. The classifier can classify the most important, important, average, and least significant sentences into separate classes and based on this, the machine will be able to create a summary of the input document. The user can select a compression ratio so that the system will output that much fraction of the summary. The model performance is measured by using different genres of Malayalam documents as well as documents from the same domain. The model is evaluated by considering content evaluation measures precision, recall, F score, and relative utility. Obtained precision and recall value shows that the model is trustable and found to be more relevant compared to the other summarizers.
International conference on construction engineering and project management
/
2022.06a
/
pp.744-751
/
2022
Construction is among the most dangerous industries with numerous accidents occurring at job sites. Following an accident, an investigation report is issued, containing all of the specifics. Analyzing the text information in construction accident reports can help enhance our understanding of historical data and be utilized for accident prevention. However, the conventional method requires a significant amount of time and effort to read and identify crucial information. The previous studies primarily focused on analyzing related objects and causes of accidents rather than the construction activities. This study aims to extract construction activities taken by workers associated with accidents by presenting an automated framework that adopts a deep learning-based approach and natural language processing (NLP) techniques to automatically classify sentences obtained from previous construction accident reports into predefined categories, namely TRADE (i.e., a construction activity before an accident), EVENT (i.e., an accident), and CONSEQUENCE (i.e., the outcome of an accident). The classification model was developed using Convolutional Neural Network (CNN) showed a robust accuracy of 88.7%, indicating that the proposed model is capable of investigating the occurrence of accidents with minimal manual involvement and sophisticated engineering. Also, this study is expected to support safety assessments and build risk management systems.
In this paper. a document is represented as a weighted graph called a text relationship map. In the graph. a node represents a vector of nouns in a sentence, an edge completely connects other nodes. and a weight on the edge is a value of the similarity between two nodes. The similarity is based on the word overlap between the corresponding nodes. The importance of a node. called an aggregate similarity in this paper. is defined as the sum of weights on the links connecting it to other nodes on the map. In this paper. we present a Korean text summarization system using the aggregate similarity. To evaluate our system, we used two test collection, one collection (PAPER-InCon) consists of 100 papers in the field of computer science: the other collection (NEWS) is composed of 105 articles in the newspapers and had built by KOROlC. Under the compression rate of 20%. we achieved the recall of 46.6% (PAPER-InCon) and 30.5% (NEWS) and the precision of 76.9% (PAPER-InCon) and 42.3% (NEWS).
This paper conducts a variety of experiments for "the extraction of Korean parallel sentences using Wikipedia data". We refer to various methods that were previously proposed for other languages. We use two approaches. The first one is to use translation probabilities that are extracted from the existing resources such as Sejong parallel corpus, and the second one is to use dictionaries such as Wiki dictionary consisting of Wikipedia titles and MRDs (machine readable dictionaries). Experimental results show that we obtained a significant improvement in system using Wikipedia data in comparison to one using only the existing resources. We finally achieve an outstanding performance, an F1-score of 57.6%. We additionally conduct experiments using a topic model. Although this experiment shows a relatively lower performance, an F1-score of 51.6%, it is expected to be worthy of further studies.
Many available online product reviews for any given product makes it difficult for a consumer to locate the helpful reviews. The purpose of this study was to investigate automatic helpfulness evaluation of online product reviews according to review information types based on the target of information. The underlying assumption was that consumers find reviews containing specific information related to the product itself or the reliability of reviewers more helpful than peripheral information, such as shipping or customer service. Therefore, each sentence was categorized by given information types, which reduced the semantic space of review sentences. Subsequently, we extracted specific information from sentences by using a topic-based representation of the sentences and a clustering algorithm. Review ranking experiments indicated more effective results than other comparable approaches.
We propose a method to analyze the user reviews and ratings of the products in the online shopping mall and automatically extracts the features of the products to determine the characteristics of a product. By judging whether a rating is given by a specific feature of a product, our method distributes the score to each feature. Conventional methods force users to wastes time reading overflowing number of reviews and ratings to decide whether to buy the product or not. Moreover, it is difficult to grasp the merits and demerits of the product, because of the way reviews and ratings are provided. It is structured in a way that it is impossible to decide which rating is given to the which characteristics of the product. Therefore, in this paper, to resolve this problem, we propose a method to automatically extract the feature of the product from the user review and distribute the score to appropriate characteristics of the product by calculating the rating of each feature from the overall rating. proposed method collects product reviews and ratings, conducts morphological analysis, and extracts features and emotional words of the products. In addition, a method for determining the polarity of a sentence in which the feature appears is given a weight value for each feature. results of the experiment and the questionnaires comparing the existing methods show the usefulness of the proposed method. We also validates the results by comparing the analysis conducted by the product review experts.
Journal of the Korea Society of Computer and Information
/
v.15
no.1
/
pp.149-157
/
2010
As the use of the Internet has recently increased, the demand for opinion information posted on the Internet has grown. However, such resources only exist on the website. People who want to search for information on the Internet find it inconvenient to visit each website. This paper focuses on the opinion information extraction and analysis system through Web mining that is based on statistics collected from Web contents. That is, users' opinion information which is scattered across several websites can be automatically analyzed and extracted. The system provides the opinion information search service that enables users to search for real-time positive and negative opinions and check their statistics. Also, users can do real-time search and monitoring about other opinion information by putting keywords in the system. Proposed technologies proved to have outstanding capabilities in comparison to existing ones through tests. The capabilities to extract positive and negative opinion information were assessed. Specifically, test movie review sentence testing data was tested and its results were analyzed.
Kim, Jong-hee;Lee, Eun-seok;Kim, Jeong-su;Park, Jong-kook;Kim, Jong-bae
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.309-311
/
2014
Despite increasing demands for big data application based on the analysis of scattered unstructured data, few relevant studies have been reported. Accordingly, the present study suggests a technique enabling a sentence-based semantic analysis by extracting objects from collected web information and automatically analyzing the relationships between such objects with collective intelligence and language processing technology. To be specific, collected information is stored in DBMS in a structured form, and then morpheme and feature information is analyzed. Obtained morphemes are classified into objects of interest, marginal objects and objects of non-interest. Then, with an inter-object attribute recognition technique, the relationships between objects are analyzed in terms of the degree, scope and nature of such relationships. As a result, the analysis of relevance between the information was based on certain keywords and used an inter-object relationship extraction technique that can determine positivity and negativity. Also, the present study suggested a method to design a system fit for real-time large-capacity processing and applicable to high value-added services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.