DOI QR코드

DOI QR Code

Sentiment Analysis using Latent Structural SVM

잠재 구조적 SVM을 활용한 감성 분석기

  • 양승원 (강원대학교 컴퓨터과학과) ;
  • 이창기 (강원대학교 컴퓨터과학과)
  • Received : 2015.09.21
  • Accepted : 2016.02.29
  • Published : 2016.05.15

Abstract

In this study, comments on restaurants, movies, and mobile devices, as well as tweet messages regardless of specific domains were analyzed for sentimental information content. We proposed a system for extraction of objects (or aspects) and opinion words from each sentence and the subsequent evaluation. For the sentiment analysis, we conducted a comparative evaluation between the Structural SVM algorithm and the Latent Structural SVM. As a result, the latter showed better performance and was able to extract objects/aspects and opinion words using VP/NP analyzed by the dependency parser tree. Lastly, we also developed and evaluated the sentiment detector model for use in practical services.

본 연구에서는 댓글(음식점/영화/모바일제품) 및 도메인이 없는 트위터 데이터에 대한 감성 분석을 수행하고, 각 문장에 대한 object(or aspect)와 opinion word를 추출하는 시스템을 개발하고 평가한다. 감성 분석을 수행하기 위해 Structural SVM 알고리즘과 Latent Structural SVM 알고리즘을 사용하여 비교 평가하였으며, 실험 결과 Latent Structural SVM이 더 좋은 성능을 보였으며, 구문 분석을 통해 분석된 VP, NP정보를 활용하여 object(aspect)와 opinion word를 추출할 수 있음을 보였다. 또한, 실제 서비스에 활용하기 위해 감성 탐지기를 개발하고 평가하였다.

Keywords

Acknowledgement

Grant : WiseKB: 빅데이터 이해 기반 자가학습형 지식베이스 및 추론 기술 개발

Supported by : 정보통신기술진흥센터

References

  1. Jo, Eunkyoung. 2012. The Current State of Affairs of the Sentiment Analysis and Case Study Based on Corpus. The Journal of Linguistic Science 61, 259-282.
  2. Changki Lee, Jointly Learning Model using modified Latent Structural SVM, The Journal of KIISE : SA Vol. 41, No. 6, Jun. 2014.
  3. Changki Lee, Joint Models for Korean Word Spacing and POS Tagging using Structural SVM, The Journal of KIISE : SA, Vol. 40, No. 12, Dec. 2013.
  4. Tsochantaridis I., et al. Support Vector Machine Learning for Interdependent and Structured Output Spaces. Proc. ICML, 2004.
  5. Khairullah Khan, Mining opinion components from unstructured review, Journal of King Saud University, 2014.
  6. Guang Qiu, Opinion Word Expansion and Target Extraction through Double Propagation, Computational Linguistics Vol. 37, No. 1, 2011.
  7. Kang Liu, Opinion Target Extraction Using Word-Based Translation Model, EMNLP-CoNLL '12, 2012.
  8. Cacilia Zirn, Fine-Grained Sentiment Analysis with Structural Features, IJCNLP, 2011.
  9. Chun-Nam John Yu and Thorsten Joachims, Learning Structural SVMs with Latent Variables, Proc. of the ICML, 2009.