• Title/Summary/Keyword: Sensor waveform

Search Result 139, Processing Time 0.021 seconds

Characteristics of the Voltage Waveforms Caused by Human Electrostatic Discharges (인체에 의한 정전기 방전전압 파형의 특성)

  • 이복희;강성만;엄주홍;이태룡
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.113-120
    • /
    • 2002
  • This paper describes characteristics of transient voltage waveforms caused by human electrostatic discharges(ESDs). For purpose of achieving the statistics on the meaningful amplitude and initial slope for transient ESD voltage waveforms, transient voltages due to human ESDs in various conditions were observed. A voltage measuring system with a wide bandwidth from DC to 400[MHz] was employed. ESD voltage waveforms are approximately the same as ESD current waveforms. Also the simulated results, which are calculated by the reposed equivalent circuit, are closely similar to the measured voltage waveforms. ESD voltage waveforms are strongly dependent on the approach speed and material of intruder, a fast approach causes ESD voltage waveform with a steep rise time than for a slow approach. The voltage waveforms from dialect finger ESDs have a relatively long rise time of 10∼30[ns], but their peaks are low. On the other side ESD voltage waveforms causer by screwdriver with insulating handle have a steep slope with a very short, less than 1[ns] rise time, but their initial spikes are extremely high The obtained results in this work would be applied to solve ESD problems for low voltage and small current electronic devices.

A wireless impedance analyzer for automated tomographic mapping of a nanoengineered sensing skin

  • Pyo, Sukhoon;Loh, Kenneth J.;Hou, Tsung-Chin;Jarva, Erik;Lynch, Jerome P.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.139-155
    • /
    • 2011
  • Polymeric thin-film assemblies whose bulk electrical conductivity and mechanical performance have been enhanced by single-walled carbon nanotubes are proposed for measuring strain and corrosion activity in metallic structural systems. Similar to the dermatological system found in animals, the proposed self-sensing thin-film assembly supports spatial strain and pH sensing via localized changes in electrical conductivity. Specifically, electrical impedance tomography (EIT) is used to create detailed mappings of film conductivity over its complete surface area using electrical measurements taken at the film boundary. While EIT is a powerful means of mapping the sensing skin's spatial response, it requires a data acquisition system capable of taking electrical impedance measurements on a large number of electrodes. A low-cost wireless impedance analyzer is proposed to fully automate EIT data acquisition. The key attribute of the device is a flexible sinusoidal waveform generator capable of generating regulated current signals with frequencies from near-DC to 20 MHz. Furthermore, a multiplexed sensing interface offers 32 addressable channels from which voltage measurements can be made. A wireless interface is included to eliminate the cumbersome wiring often required for data acquisition in a structure. The functionality of the wireless impedance analyzer is illustrated on an experimental setup with the system used for automated acquisition of electrical impedance measurements taken on the boundary of a bio-inspired sensing skin recently proposed for structural health monitoring.

Smart Device based ECG Sensing IoT Applications (스마트 디바이스 기반 ECG 감지 IoT 응용 서비스에 관한 연구)

  • Mariappan, Vinayagam;Lee, Seungyoun;Lee, Junghoon;Lee, Juyoung;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.18-23
    • /
    • 2016
  • Internet of things (IoT) is revolutionizing in the patient-Centered medical monitoring and management by authorizing the Smartphone application and data analysis with medical centers. The network connectivity is basic requirement to collect the observed human beings' health information from Smartphone to monitor the health from IoT medical devices in personal healthcare. The IoT environment built in Smartphone is very effective and does not demand infrastructure. This paper presents the smart phone deployed personal IoT architecture for Non-Invasive ECG Capturing. The adaptable IoT medical device cum Gateway is used for personal healthcare with big data storage on cloud configuration. In this approach, the Smartphone camera based imaging technique used to extract the personal ECG waveform and forward it to the cloud based big data storage connectivity using IoT architecture. Elaborated algorithm allows for efficient ECG registration directly from face image captured from Smartphone or Tablet camera. The profound technique may have an exceptional value in monitoring personal healthcare after adequate enhancements are introduced.

Development of Blood Pressure Simulator for Test of the Arm-type Automatic Blood Pressure Monitor (팔뚝형 자동혈압계 평가용 혈압 시뮬레이터 개발)

  • Kim, S.H.;Yun, S.U.;Cho, M.H.;Lee, S.J.;Lim, M.H.;Seo, S.Y.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.239-246
    • /
    • 2015
  • Blood pressure is possible to diagnose a disease associated with blood pressure and judgment the current health of patients. Automatic blood pressure monitor capable of measuring a blood pressure easily in hospital and at home have become spread. In this study, we developed the blood pressure simulator (BPS) that can test the arm-type automatic blood pressure monitor that is commonly used in hospital. BPS is to produce a pressure similar to the pressure wave generated in the human blood using a servo disk motor. Then, using the silicon tube, it implements the situations such as human blood vessels, and to output the generated pressure waveform. Simply the BPS's phantom put on the cuff and it is able to simulate blood pressure. So anyone can quickly test the blood pressure monitor within one minute and it is possible to shorten the test time required for the automatic blood pressure monitor. In Performance test, the trends and the standard deviation of the values measured in the BPS is similar to the value of the measured pressure from people with normal blood pressure. Thus, the development BPS showed a possibility of taking into account the actual blood pressure measurement environment simulator.

Study on Error Correction of Impact Sound Position Estimation Using Ray Tracing (음선 추적을 이용한 폭발음 위치추정 오차 보정에 대한 연구)

  • Choi, Donghun;Go, Yeong-Ju;Lee, Jaehyung;Na, Taeheum;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2016
  • TDOA(time delay of arrival) position estimate from acoustic measurement of artillery shell impact is studied in order to develop a targeting evaluation system. Impact position is calculated from the intersections of hyperbolic estimates based on the least square Taylor series method. The mathematical process of Taylor series estimation is known to be robust. However, the concern lays with the accuracy because it is sensitive to the bias caused by the randomness of measurement situation. The measurement error typically occurs from the distortion of waveform, change of travelling path, and sensor position error. For outdoor measurement, a consideration should be made on the atmospheric condition such as temperature and wind which can possibly change the trajectories of rays of sound. It produces wrong propagation time events accordingly. Ray tracing and optimization techniques are introduced in this study to minimize the bias induced by the ray of sound. The numerical simulation shows that the atmospheric correction improves the estimation accuracy.

An ASIC Design for Photon Pulse Counting Particle Detection (광계수방식 물리입자 검출용 ASIC 설계)

  • Jung, Jun-Mo;Soh, Myung-Jin;Kim, Hyo-Sook;Han, AReum;Soh, Seul-Yi
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.947-953
    • /
    • 2019
  • The purpose of this paper is to explore an ASIC design for estimating sizes and concentrations of airborne micro-particles by the means of integrating, amplifying and digitizing electric charge signals generated by photo-sensors as it receives scattered photons by the presence of micro-particles, consisting of a pre-amplifier that detects and amplifies voltage or current signal from photo-sensor that generates charges (hole-electron pairs) when exposed to visible rays, infrared rays, ultraviolet rays, etc. according to the intensity of rays; a shaper for shaping the amplified signal to a semi-gaussian waveform; two discriminators and binary counters for outputting digital signals by comparing the magnitude of the shaped signal with an arbitrary reference voltages. The ASIC with the proposed architecture and functional blocks in this study was designed with a 0.18um standard CMOS technology from Global Foundries and the operation and performances of the ASIC has been verified by the silicons fabricated by using the process.

Smart Radar System for Life Pattern Recognition (생활패턴 인지가 가능한 스마트 레이더 시스템)

  • Sang-Joong Jung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2022
  • At the current camera-based technology level, sensor-based basic life pattern recognition technology has to suffer inconvenience to obtain accurate data, and commercial band products are difficult to collect accurate data, and cannot take into account the motive, cause, and psychological effect of behavior. the current situation. In this paper, radar technology for life pattern recognition is a technology that measures the distance, speed, and angle with an object by transmitting a waveform designed to detect nearby people or objects in daily life and processing the reflected received signal. It was designed to supplement issues such as privacy protection in the existing image-based service by applying it. For the implementation of the proposed system, based on TI IWR1642 chip, RF chipset control for 60GHz band millimeter wave FMCW transmission/reception, module development for distance/speed/angle detection, and technology including signal processing software were implemented. It is expected that analysis of individual life patterns will be possible by calculating self-management and behavior sequences by extracting personalized life patterns through quantitative analysis of life patterns as meta-analysis of living information in security and safe guards application.

Heart Rate Signal Extraction by Using Finger vein Recognition System (지정맥 인식 시스템을 이용한 심박신호 검출)

  • Bok, Jin Yeong;Suh, Kun Ha;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.701-709
    • /
    • 2019
  • Recently, heart rate signal, which is one of biological signals, have been used in various fields related to healthcare. Conventionally, most of the proposed heart rate signal detection methods are contact type methods, but there is a problem of discomfort that the subject have to contact with the device. In order to solve the problem, detection study by non-contact method has been progressed recently. The detected heart rate signal can be used for finger vein liveness detection and various application using heart rate. In this paper, we propose a method to obtain heart rate signal by using finger vein imaging system. The proposed method detected the signal from the changes of the brightness value in the time domain of the infrared finger vein images and converted it into the frequency domain using the image processing algorithm. After the conversion, we removed the noise not related to the heart rate signal through band-pass filtering. In order to evaluate the accuracy of the signal, we analyzed the correlation with the signal obtained simultaneously with the finger vein acquisition device and contact type PPG sensor approved by KFDA. As a result, it was possible to confirm that the heart rate signal detected in non-contact method through the finger vein image coincides with the waveform of actual heart rate signal.

Reproducibility of Regional Pulse Wave Velocity in Healthy Subjects

  • Im Jae-Joong;Lee, Nak-Bum;Rhee Moo-Yong;Na Sang-Hun;Kim, Young-Kwon;Lee, Myoung-Mook;Cockcroft John R.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.2
    • /
    • pp.19-24
    • /
    • 2006
  • Background: Pulse wave velocity (PWV), which is inversely related to the distensibility of an arterial wall, offers a simple and potentially useful approach for an evaluation of cardiovascular diseases. In spite of the clinical importance and widespread use of PWV, there exist no standard either for pulse sensors or for system requirements for accurate pulse wave measurement. Objective of this study was to assess the reproducibility of PWV values using a newly developed PWV measurement system in healthy subjects prior to a large-scale clinical study. Methods: System used for the study was the PP-1000 (Hanbyul Meditech Co., Korea), which provides regional PWV values based on the measurements of electrocardiography (ECG), phonocardiography (PCG), and pulse waves from four different sites of arteries (carotid, femoral, radial, and dorsalis pedis) simultaneously. Seventeen healthy male subjects with a mean age of 33 years (ranges 22 to 52 years) without any cardiovascular disease were participated for the experiment. Two observers (observer A and B) performed two consecutive measurements from the same subject in a random order. For an evaluation of system reproducibility, two analyses (within-observer and between-observer) were performed, and expressed in terms of mean difference ${\pm}2SD$, as described by Bland and Altman plots. Results: Mean and SD of PWVs for aorta, arm, and leg were $7.07{\pm}1.48m/sec,\;8.43{\pm}1.14m/sec,\;and\;8.09{\pm}0.98m/sec$ measured from observer A and $6.76{\pm}1.00m/sec,\;7.97{\pm}0.80m/sec,\;and\;\7.97{\pm}0.72m/sec$ from observer B, respectively. Between-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.14{\pm\}0.62m/sec,\;0.18{\pm\}0.84m/sec,\;and\;0.07{\pm}0.86m/sec$, and the correlation coefficients were high especially 0.93 for aortic PWV. Within-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.01{\pm}0.26m/sec,\;0.02{\pm}0.26m/sec,\;and\;0.08{\pm}0.32m/sec$ from observer A and $0.01{\pm}0.24m/sec,\;0.04{\pm}0.28m/sec,\;and\;0.01{\pm}0.20m/sec$ from observer B, respectively. All the measurements showed significantly high correlation coefficients ranges from 0.94 to 0.99. Conclusion: PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis results with high reproducibility. Since the reproducibility of the measurement is critical for the diagnosis in clinical use, it is necessary to provide an accurate algorithm for the detection of additional features such as flow wave, reflection wave, and dicrotic notch from a pulse waveform. This study will be extended for the comparison of PWV values from patients with various vascular risks for clinical application. Data acquired from the study could be used for the determination of the appropriate sample size for further studies relating various types of arteriosclerosis-related vascular disease.

  • PDF