• Title/Summary/Keyword: Sensor technology

Search Result 8,574, Processing Time 0.031 seconds

A Study on the Implementation of Intelligent Diagnosis System for Motor Pump (모터펌프의 지능형 진단시스템 구현에 관한 연구)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.87-91
    • /
    • 2019
  • The diagnosis of the failure for the existing electrical facilities was based on regular preventive maintenance, but this preventive maintenance was limited in preventing a lot of cost loss and sudden system failure. To overcome these shortcomings, fault prediction and diagnostic techniques are critical to increasing system reliability by monitoring electrical installations in real time and detecting abnormal conditions in the facility early. As the performance and quality deterioration problem occurs frequently due to the increase in the number of users of the motor pump, the purpose is to build an intelligent control system that can control the motor pump to maximize the performance and to improve the quality and reliability. To this end, a vibration sensor, temperature sensor, pressure sensor, and low water level sensor are used to detect vibrations, temperatures, pressures, and low water levels that can occur in the motor pump, and to build a system that can identify and diagnose information to users in real time.

Implementation of automatic detection system of IoT based sensor device (Considering the application service of reduction of consumption current)

  • Kwon, Myung-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.113-122
    • /
    • 2018
  • In this paper, IoT(Internet of things) technology, which is the core of the 4th industrial revolution, was applied to the study of reduction of consumption current. The IoT is a sensor that collects data, a sensor communication, a gateway that processes and stores the collected data. Data application of IoT technology is applied to smart home, smart city, healthcare, smart factory, etc. and it needs to be applied to various industrial fields. By sensing the location of the sensor device, the specific functions of the gateway and the platform are turned ON and OFF to reduce the consumption current of the equipment during the OFF period. When the sensor device accesses the gateway, the specific function of the gateway is turned ON and When the device is separated from the gateway, it senses the sensitivity of the wireless signal and automatically turns off the certain functions. As a resurt, it has reduced the consumption of current. In this paper, we propose a novel system for detecting the location of sensor devices by applying IoT technology. The system implementation is realized by software based, and defines the requirements for the implementation of the sensor device gateway. The gateway automatically detects the location, movement of the device and performs necessary functions. Finally verifies the automatic detection performance of the gateway according to the location of the device. It will contribute greatly to the development of the smart city and office.

Room Temperature Hydrogen Gas Sensor Based on Carbon Nanotube Yarn (상온감지 가능한 탄소나노튜브 방적사 기반의 수소 감지 센서)

  • Kim, Jae Keon;Lee, Junyeop;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • We report the development of a room-temperature hydrogen ($H_2$) gas sensor based on carbon nanotubes (CNT) yarn. To detect $H_2$ gas in room temperature, a highly ordered CNT yarn was placed on a substrate from a spin-capable CNT forest, followed by the deposition of a platinum (Pt) layer on surface of the CNT yarn. To examine the effect of the Pt-layer on the response of the CNT sensor, a comparative sensing performance was characterized on both the Pt deposited and non-deposited CNT yarn at room temperature. The Pt-CNT yarn yielded high response, whereas the non-deposited CNT yarn showed negligible response for $H_2$ detection at room temperature. Pt is a reliable and efficient catalyst that can substantially improve the detection of $H_2$ gas by chemical sensitization via a "spillover" effect. It can be efficiently utilized to increase the sensitivity and selectivity as well as to obtain fast response and recovery times.

A Hybrid Bilayer Pressure Sensor based on Silver Nanowire (은 나노와이어 기반 하이브리드 이중층 압력 센서)

  • Lee, Jin-Young;Shin, Dong-Kyun;Kim, Ki-Eun;Seo, Yu-Seok;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.31-35
    • /
    • 2017
  • We have fabricated flexible and stretchable pressure sensors using silver nanowires (AgNWs) and analyzed their electric responses. AgNWs are spray coated directly onto uncured polydimethylsiloxane (PDMS) such that AgNWs penetrate into the uncured PDMS, enhancing the adhesion properties of AgNWs. However, the single-layered AgNW sensor exhibits unstable electric response and low pressure sensitivity. To tackle it, we have coated a conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto the AgNW layer. Such a hybrid bilayer sensor ensures a stable electric response because the over-coating layer of PEDOT:PSS effectively suppresses the protrusion of AgNWs from PDMS during release. To enhance the sensitivity further, we have also fabricated a stacked bilayer AgNW sensor. However, its electric response varies depending sensitively on the initial overlap pressure.

  • PDF

Comparison of the Power Consumption between the Ceramic and Wire Bonding Packaging Methods for Solid State Electrochemical Carbon dioxide Sensors

  • Kim, Tae Wan;Park, Chong-Ook
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.173-177
    • /
    • 2016
  • Tape casting ceramics technology has been adopted for the fabrication of solid state electrochemical $CO_2$ sensors and the packaging substrates. The fabricated $CO_2$ sensors exhibit a fast response and a good recovery with the almost theoretical sensitivity of 37 mV/decade, corresponding to a sensor operating temperature of 373 K. The two packaging methods, the wire bonding package and the surface- mounted on the ceramic package, were compared with respect to their power consumption and mass production feasibility. In terms of the ease of fabrication, the surface mount packaging technology is superior to the wire bonding technology but its power consumption is approximately twice that of the wired package.

A Study of Phase Sensing Device IoT Network Security Technology Framework Configuration (디바이스 센싱 단계의 IoT 네트워크 보안 기술 프레임워크 구성)

  • Noh, SiChoon;Kim, Jeom goo
    • Convergence Security Journal
    • /
    • v.15 no.4
    • /
    • pp.35-41
    • /
    • 2015
  • Internet of Things has a wide range of vulnerabilities are exposed to information security threats. However, this does not deal with the basic solution, the vaccine does not secure encryption for the data transmission. The encryption and authentication message transmitted from one node to the construction of the secure wireless sensor networks is required. In order to satisfy the constraint, and security requirements of the sensor network, lightweight encryption and authentication technologies, the light key management technology for the sensor environment it is required. Mandatory sensor network security technology, privacy protection technology subchannel attack prevention, and technology. In order to establish a secure wireless sensor networks encrypt messages sent between the nodes and it is important to authenticate. Lightweight it shall apply the intrusion detection mechanism functions to securely detect the presence of the node on the network. From the sensor node is not involved will determine the authenticity of the terminal authentication technologies, there is a need for a system. Network security technology in an Internet environment objects is a technique for enhancing the security of communication channel between the devices and the sensor to be the center.

Hydrogen Sulfide Sensing Characteristics Depending on Electrolytes of Pt/CNT Liquid Electrochemical Sensors (Pt/CNT 전극 기반 전기화학식 센서의 전해질에 따른 황화수소 감지 특성)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Soobeen baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.194-198
    • /
    • 2023
  • With the recent development of industrial technology, the problem of odor due to leakage of toxic gas discharged from industrial complexes is gradually increasing. Among them, hydrogen sulfide is a colorless representative odorous substance that can cause pain through irritation of the mucous membranes of the eyes and respiratory tract, and is a gas that can cause central nervous system paralysis and suffocation when exposed to high concentrations. Therefore, in order to improve the odor problem, research on a gas sensor capable of quickly and reliably detecting a leak of hydrogen sulfide is being actively conducted. A lot of research has been done on the existing metal oxide-based hydrogen sulfide gas sensor, but it has the disadvantage of requiring low selectivity and high temperature operating conditions. Therefore, in this study, a Pt/CNT-based electrochemical hydrogen sulfide gas sensor capable of detecting at low temperatures with high selectivity for hydrogen sulfide was developed. A working electrode capable of selectively detecting only hydrogen sulfide was fabricated by synthesizing Pt nanoparticles as a catalyst on functionalized CNT and applied to an electrochemical hydrogen sulfide gas sensor. It was confirmed that the manufactured Pt/CNT-based electrochemical hydrogen sulfide gas sensor has a current change of up to 100uA for hydrogen sulfide, and the both response time and recovery time were within 15 seconds.

Fabrication of High-Performance Colorimetric Fiber-Type Sensors for Hydrogen Sulfide Detection (황화수소 가스 감지를 위한 고성능 변색성 섬유형 센서의 제작 및 개발)

  • Jeong, Dong Hyuk;Maeng, Bohee;Lee, Junyeop;Cho, Sung Been;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.168-174
    • /
    • 2022
  • Hydrogen sulfide(H2S) gas is a high-risk gas that can cause suffocation or death in severe cases, depending on the concentration of exposure. Various studies to detect this gas are still in progress. In this study, we demonstrate a colorimetric sensor that can detect H2S gas using its direct color change. The proposed nanofiber sensor containing a dye material named Lead(II) acetate, which changes its color according to H2S gas reaction, is fabricated by electrospinning. The performance of this sensor is evaluated by measuring RGB changes, ΔE value, and gas selectivity. It has a ΔE value of 5.75 × 10-3 ΔE/s·ppm, showing improved sensitivity up to 1.4 times that of the existing H2S color change detection sensor, which is a result of the large surface area of the nanofibers. The selectivity for H2S gas is confirmed to be an excellent value of almost 70 %.

Quorum-based Key Management Scheme in Wireless Sensor Networks

  • Wuu, Lih-Chyau;Hung, Chi-Hsiang;Chang, Chia-Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2442-2454
    • /
    • 2012
  • To ensure the security of wireless sensor networks, it is important to have a robust key management scheme. In this paper, we propose a Quorum-based key management scheme. A specific sensor, called as key distribution server (KDS), generates a key matrix and establishes a quorum system from the key matrix. The quorum system is a set system of subsets that the intersection of any two subsets is non-empty. In our scheme, each sensor is assigned a subset of the quorum system as its pre-distributed keys. Whenever any two sensors need a shared key, they exchange their IDs, and then each sensor by itself finds a common key from its assigned subset. A shared key is then generated by the two sensors individually based on the common key. By our scheme, no key is needed to be refreshed as a sensor leaves the network. Upon a sensor joining the network, the KDS broadcasts a message containing the joining sensor ID. After receiving the broadcast message, each sensor updates the key which is in common with the new joining one. Only XOR and hash operations are required to be executed during key update process, and each sensor needs to update one key only. Furthermore, if multiple sensors would like to have a secure group communication, the KDS broadcasts a message containing the partial information of a group key, and then each sensor in the group by itself is able to restore the group key by using the secret sharing technique without cooperating with other sensors in the group.

Structural Health Monitoring System Employing Smart Sensor Technology Part 1: Development and Performance Test of Smart Sensor (스마트 센서 기술을 이용한 구조물 건전도 모니터링 시스템 Part I : 스마트 센서의 개발과 성능평가)

  • Heo, Gwang Hee;Lee, Woo Sang;Kim, Man Goo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.134-144
    • /
    • 2007
  • In this study, a smart sensor unit is developed by using the smart sensor technology that is being rapidly developed in recent years for structural health monitoring system, and its performance is evaluated through various experiments, and also, damage detection experiment is performed on a model structure. This paper as the first half of this study contains the development and performance evaluation of the smart sensor. In the latter half of this study, structure damage detection experiment is performed for the application of verified smart sensor unit into structural health monitoring, and it is compared with a wire measurement system. The smart sensor is developed by using high-power wireless modem, MEMS Sensor and AVR microcontroller, and an embedded program is also developed for the control and operation of the sensor unit. To verify the performance of the smart sensor, many experiments are performed for sensitivity and resolution analysis tests, data acquisition by using cantilever beam and shaker, and on-site application using actual bridge. As a result, the smart sensor proves to be satisfactory in its performance.