DOI QR코드

DOI QR Code

Hydrogen Sulfide Sensing Characteristics Depending on Electrolytes of Pt/CNT Liquid Electrochemical Sensors

Pt/CNT 전극 기반 전기화학식 센서의 전해질에 따른 황화수소 감지 특성

  • Yuntae Ha (Korea Institute of Industry Technology, Advanced mechatronics R&D Group) ;
  • JinBeom Kwon (Korea Institute of Industry Technology, Advanced mechatronics R&D Group) ;
  • Suji Choi (Korea Institute of Industry Technology, Advanced mechatronics R&D Group) ;
  • Soobeen baek (Korea Institute of Industry Technology, Advanced mechatronics R&D Group) ;
  • Daewoong Jung (Korea Institute of Industry Technology, Advanced mechatronics R&D Group)
  • Received : 2023.05.10
  • Accepted : 2023.05.31
  • Published : 2023.05.31

Abstract

With the recent development of industrial technology, the problem of odor due to leakage of toxic gas discharged from industrial complexes is gradually increasing. Among them, hydrogen sulfide is a colorless representative odorous substance that can cause pain through irritation of the mucous membranes of the eyes and respiratory tract, and is a gas that can cause central nervous system paralysis and suffocation when exposed to high concentrations. Therefore, in order to improve the odor problem, research on a gas sensor capable of quickly and reliably detecting a leak of hydrogen sulfide is being actively conducted. A lot of research has been done on the existing metal oxide-based hydrogen sulfide gas sensor, but it has the disadvantage of requiring low selectivity and high temperature operating conditions. Therefore, in this study, a Pt/CNT-based electrochemical hydrogen sulfide gas sensor capable of detecting at low temperatures with high selectivity for hydrogen sulfide was developed. A working electrode capable of selectively detecting only hydrogen sulfide was fabricated by synthesizing Pt nanoparticles as a catalyst on functionalized CNT and applied to an electrochemical hydrogen sulfide gas sensor. It was confirmed that the manufactured Pt/CNT-based electrochemical hydrogen sulfide gas sensor has a current change of up to 100uA for hydrogen sulfide, and the both response time and recovery time were within 15 seconds.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 연구개발특구진흥재단의지원을받아수행된연구임(2020-DD-UP-0348). 본 연구는 대한민국 정부(산업통상자원부 및 방위사업청) 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비 지원으로 수행되었습니다.(과제번호 21-SF-BR-05) 본논문은한국생산기술연구원기관주요사업 "다중채널(Multichannel) 기반의 광학필터를 적용한 온실 가스(CO, CO2) 감지용비분산적외선(Non-Dispersive Infrared) 센서개발 (Kitech JD-23-0006)"의 지원으로 수행한 연구입니다.

References

  1. I. H. Jung, "A case of hydrogen sulfide poisoning caused by unauthorized discharge of wastewater", J. Korean Soc. Occup. Environ. Med., pp. 135-135, 2022.
  2. H. S. Gu, Z. Wang, and Y. M. Hu, "Hydrogen gas sensors based on semiconductor oxide nanostructures", Sens., Vol. 12, No. 5, pp. 5517-5550, 2012. https://doi.org/10.3390/s120505517
  3. Y. F. Luo, C. Zhang, B. Zheng, X. Geng, and M. Debliquy, "Hydrogen sensors based on noble metal doped metal-oxide semiconductor: A review", Inter. J. Hydrogen Energy, Vol. 42, No. 31, pp. 20386-20397, 2017. https://doi.org/10.1016/j.ijhydene.2017.06.066
  4. A. F. IM, F. Awwad, Y. E. Greish, and S. T. Mahmoud, "Hydrogen sulfide (H 2 S) gas sensor: A review", IEEE Sens. J., Vol. 19, No. 7 , pp. 2394-2407, 2018.
  5. X. Y. Yang, Y. Zhang, X. Hao, Y. Song, X. Liang, and F. Liu, "Nafion-based amperometric H2S sensor using Pt-Rh/C sensing electrode", Sens. Actuators B: Chem., Vol. 273, pp, 635-641, 2018. https://doi.org/10.1016/j.snb.2018.06.087
  6. D. D. La, C. K. Kim, T. S. Jun, Y. Jung, G. H . Seong, J, Choo. and Y. S. Kim, "Pt nanoparticle-supported multiwall carbon nanotube electrodes for amperometric hydrogen detection", Sens. Actuators B: Chem., Vol. 155, No. 1, pp. 191-198, 2011. https://doi.org/10.1016/j.snb.2010.11.045
  7. J. Gebicki, A. Kloskowski, W. Chrzanowski, P. Stepnowski, and J. Namiesnik, "Application of ionic liquids in amperometric gas sensors", Crit. Rev. Anal. Chem., Vol. 46, No. 2, pp. 122-138, 2016. https://doi.org/10.1080/10408347.2014.989957
  8. G. Schiavon, G. Zotti, R. Toniolo, and G. Bontempelli, "Electrochemical detection of trace hydrogen sulfide in gaseous samples by porous silver electrodes supported on ionexchange membranes (solid polymer electrolytes)", Anal. Chem., Vol. 67, No. 2, pp. 318-323, 1995. https://doi.org/10.1021/ac00098a015
  9. R. Baron and J. Saffell, "Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: A review", ACS Sens.,Vol. 2, No. 11, pp. 1553-1566, 2017. https://doi.org/10.1021/acssensors.7b00620
  10. P. Zuo, R. Wang, F. Li, F. Wu, G. Xu, and W. Niu, "A trace ppb-level electrochemical H2S sensor based on ultrathin Pt nanotubes", Talanta 233, p. 122539. 2021.
  11. J. Li, Y. Wang, X. Gao, Q. Ma, L. Wang, and J. Han, "H2S sensing properties of the SnO2-based thin films", Sens. Actuators B, Vol. 65, pp. 111-113, 2000. https://doi.org/10.1016/S0925-4005(99)00406-2
  12. A. M. Nima, C. Zuidema, S. Sousan, L. Hallett, M. Tatum, A. M. Rule, G. Thomas, T. M. Peters, and K. Koehler, "Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide", J. Occup. Environ. Hyg., Vol. 15, No. 2, pp. 87-98, 2018. https://doi.org/10.1080/15459624.2017.1388918
  13. J. Gebicki, A. Kloskowski, W. Chrzanowski, P. Stepnowski, and J. Namiesnik, "Application of ionic liquids in amperometric gas sensors", Crit. Rev. in Anal. Chem., Vol. 46, No. 2, pp. 122-138, 2016. https://doi.org/10.1080/10408347.2014.989957
  14. C. B. Yu, Y. Wang, K. Hua, W. Xing, and T. Lu, "Electrochemical H2S sensor with H2SO4 pre-treated Nafion membrane as solid polymer electrolyte", Sens. Actuators B: Chem., Vol. 86, No. 2-3, pp. 259-265, 2002. https://doi.org/10.1016/S0925-4005(02)00200-9