• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.029 seconds

Energy-Efficient Real-Time Task Scheduling for Battery-Powered Wireless Sensor Nodes (배터리 작동식의 무선 센서 노드를 위한 에너지 효율적인 실시간 태스크 스케줄링)

  • Kim, Dong-Joo;Kim, Tae-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1423-1435
    • /
    • 2010
  • Building wireless sensor networks requires a constituting sensor node to consider the following limited hardware resources: a small battery lifetime limiting available power supply for the sensor node, a low-power microprocessor with a low-performance computing capability, and scarce memory resources. Despite such limited hardware resources of the sensor node, the sensor node platform needs to activate real-time sensing, guarantee the real-time processing of sensing data, and exchange data between individual sensor nodes concurrently. Therefore, in this paper, we propose an energy-efficient real-time task scheduling technique for battery-powered wireless sensor nodes. The proposed energy-efficient task scheduling technique controls the microprocessor's operating frequency and reduces the power consumption of a task by exploiting the slack time of the task when the actual execution time of the task can be less than its worst case execution time. The outcomes from experiments showed that the proposed scheduling technique yielded efficient performance in terms of guaranteeing the completion of real-time tasks within their deadlines and aiming to provide low power consumption.

MCRO-ECP: Mutation Chemical Reaction Optimization based Energy Efficient Clustering Protocol for Wireless Sensor Networks

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3494-3510
    • /
    • 2019
  • Wireless sensor networks encounter energy saving as a major issue as the sensor nodes having no rechargeable batteries and also the resources are limited. Clustering of sensors play a pivotal role in energy saving of the deployed sensor nodes. However, in the cluster based wireless sensor network, the cluster heads tend to consume more energy for additional functions such as reception of data, aggregation and transmission of the received data to the base station. So, careful selection of cluster head and formation of cluster plays vital role in energy conservation and enhancement of lifetime of the wireless sensor networks. This study proposes a new mutation chemical reaction optimization (MCRO) which is an algorithm based energy efficient clustering protocol termed as MCRO-ECP, for wireless sensor networks. The proposed protocol is extensively developed with effective methods such as potential energy function and molecular structure encoding for cluster head selection and cluster formation. While developing potential functions for energy conservation, the following parameters are taken into account: neighbor node distance, base station distance, ratio of energy, intra-cluster distance, and CH node degree to make the MCRO-ECP protocol to be potential energy conserver. The proposed protocol is studied extensively and tested elaborately on NS2.35 Simulator under various senarios like varying the number of sensor nodes and CHs. A comparative study between the simulation results derived from the proposed MCRO-ECP protocol and the results of the already existing protocol, shows that MCRO-ECP protocol produces significantly better results in energy conservation, increase network life time, packets received by the BS and the convergence rate.

Key Pre-distribution using the Quorum System in Wireless Sensor Networks (센서 네트워크에서의 쿼럼 시스템을 이용한 키 사전 분배)

  • Kang Ji-Myung;Lee Sung-Ryeoll;Cho Seong-Ho;Kim Chong-Kwon;Ahn Joung-Chul
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.3
    • /
    • pp.193-200
    • /
    • 2006
  • The security feature is essential in wireless sensor network such as intrusion detection or obstacle observation. Sensor nodes must have shared secret between nodes to support security such as privacy. Many methods which provide key pre-distribution need too many keys or support poor security. To solve this problem, probabilistic key pre-distribution is proposed. This method needs a few keys and use probabilistic method to share keys. However, this method does not guarantee key sharing between nodes, and neighbor nodes nay not communicate each other. It leads to waste of network resource such as inefficient routing, extra routing protocol. In this paper, we propose new key distribution method using quorum system which needs a few keys and guarantee key sharing between nodes. We also propose extension of the method which needs fewer keys and guarantee key sharing when node deployment knowledge is well known.

A RSS-Based Localization Method Utilizing Robust Statistics for Wireless Sensor Networks under Non-Gaussian Noise (비 가우시안 잡음이 존재하는 무선 센서 네트워크에서 Robust Statistics를 활용하는 수신신호세기기반의 위치 추정 기법)

  • Ahn, Tae-Joon;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 2011
  • In the wireless sensor network(WSN), the detection of precise location of sensor nodes is essential for efficiently utilizing the sensing data acquired from sensor nodes. Among various location methods, the received signal strength (RSS) based localization scheme is mostly preferable in many applications since it can be easily implemented without any additional hardware cost. Since the RSS localization method is mainly effected by radio channel between two nodes, outlier data can be included in the received signal strength measurement specially when some obstacles move around the link between nodes. The outlier data can have bad effect on estimating the distance between two nodes such that it can cause location errors. In this paper, we propose a RSS-based localization method using Robust Statistic and Gaussian filter algorithm for enhancing the accuracy of RSS-based localization. In the proposed algorithm, the outlier data can be eliminated from samples by using the Robust Statistics as well as the Gaussian filter such that the accuracy of localization can be achieved. Through simulation, it is shown that the proposed algorithm can increase the accuracy of localization and is more robust to non gaussian noise channels.

Study on a Dynamic master system for Controller Area Network

  • Won, Ji-Woon;Hong, Won-Kee;Lee, Yong-Doo
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.147-151
    • /
    • 2005
  • CAN(Controller Area Network) is a simple and efficient network system for real time control and measurement. As it is not only good at error detection but also strong in electromagnetic interference, CAN has been widely used all over the industries. Basically, CAN needs a master node in charge of sensor data collection, node scheduling for data transmission to a monitoring system and error detection. According to the number of mater nodes, the CAN system is classified into two type of master system. One is a single master system that has only one master node and the other is a multi-master system where any sensor node can become a master node depending on the system's conditions. While it has the advantage of its fault tolerance, the multi-master system will suffer form the overall performance degradation when a defect is found in the master node. It is because all sensor nodes pertaining to a defective master node lose their position. Moreover, it is difficult and expensive to implement. For a single master system, the whole system will be broken down when a problem happens to a single master. In this paper, a dynamic master system is presented that there are several sub-master nodes of which basic functions are those of other sensor nodes at ordinary times but dynamically changed to replace the failing master node. An effective scheduling algorithm is also proposed to choose an appropriate node among sub-master nodes, where each sub-master node has its precedence value. The performance of the dynamic master system is experimented and analyzed.

  • PDF

RSNT-cFastICA for Complex-Valued Noncircular Signals in Wireless Sensor Networks

  • Deng, Changliang;Wei, Yimin;Shen, Yuehong;Zhao, Wei;Li, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4814-4834
    • /
    • 2018
  • This paper presents an architecture for wireless sensor networks (WSNs) with blind source separation (BSS) applied to retrieve the received mixing signals of the sink nodes first. The little-to-no need of prior knowledge about the source signals of the sink nodes in the BSS method is obviously advantageous for WSNs. The optimization problem of the BSS of multiple independent source signals with complex and noncircular distributions from observed sensor nodes is considered and addressed. This paper applies Castella's reference-based scheme to Novey's negentropy-based algorithms, and then proposes a novel fast fixed-point (FastICA) algorithm, defined as the reference-signal negentropy complex FastICA (RSNT-cFastICA) for complex-valued noncircular-distribution source signals. The proposed method for the sink nodes is substantially more efficient than Novey's quasi-Newton algorithm in terms of computational speed under large numbers of samples, can effectively improve the power consumption effeciency of the sink nodes, and is significantly beneficial for WSNs and wireless communication networks (WCNs). The effectiveness and performance of the proposed method are validated and compared with three related BSS algorithms through theoretical analysis and simulations.

Clustering Algorithm for Extending Lifetime of Wireless Sensor Networks (무선 센서 네트워크의 수명연장을 위한 클러스터링 알고리즘)

  • Kim, Sun-Chol;Choi, Seung-Kwon;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.77-85
    • /
    • 2015
  • Recently, wireless sensor network(WSN) have been used in various fields to implement ubiquitous computing environment. WSN uses small, low cost and low power sensors in order to collect information from the sensor field. This paper proposes a clustering algorithm for energy efficiency of sensor nodes. The proposed algorithm is based on conventional LEACH, the representative clustering protocol for WSN and it prolongs network and nodes life time using sleep technique and changable transmission mode. The nodes of the proposed algorithm first calculate their clustering participation value based on the distance to the neighbor nodes. The nodes located in high density area will have clustering participation value and it can turn to sleep mode. Besides, proposed algorithm can change transmission method from conventional single-hop transmission to multi-hop transmission according to the energy level of cluster head. Simulation results show that the proposed clustering algorithm outperforms conventional LEACH, especially non-uniformly deployed network.

An Energy Optimization Algorithm for Maritime Search and Rescue in Wireless Sensor Networks (무선 센서 네트워크에서 해양 수색 및 구조를 위한 에너지 최적화 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.676-682
    • /
    • 2018
  • In wireless sensor networks, we propose an optimization algorithm in order to minimize the consumed energy of nodes for maritime search and rescue. In the marine environment, search and rescue operations are mainly performed on the surveillance side and passively on the rescued side. A self-configurable wireless sensor network can build a system that can send rescue signals in the operations. A simulated annealing algorithm is proposed to minimize the consumed energy of nodes in the networks with many nodes. As the density of nodes becomes higher, the algorithmic computation will increase highly. To search the good result in a proper execution time, the proposed algorithm proposes a new neighborhood generating operation and improves the efficiency of the algorithm. The proposed algorithm was evaluated in terms of the consumed energy of the nodes and algorithm execution time, and the proposed algorithm performed better than other optimization algorithms in the performance results.

Detection of False Data Injection Attacks in Wireless Sensor Networks (무선 센서 네트워크에서 위조 데이터 주입 공격의 탐지)

  • Lee, Hae-Young;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.83-90
    • /
    • 2009
  • Since wireless sensor networks are deployed in open environments, an attacker can physically capture some sensor nodes. Using information of compromised nodes, an attacker can launch false data injection attacks that report nonexistent events. False data can cause false alarms and draining the limited energy resources of the forwarding nodes. In order to detect and discard such false data during the forwarding process, various security solutions have been proposed. But since they are prevention-based solutions that involve additional operations, they would be energy-inefficient if the corresponding attacks are not launched. In this paper, we propose a detection method that can detect false data injection attacks without extra overheads. The proposed method is designed based on the signature of false data injection attacks that has been derived through simulation. The proposed method detects the attacks based on the number of reporting nodes, the correctness of the reports, and the variation in the number of the nodes for each event. We show the proposed method can detect a large portion of attacks through simulation.

EETCA: Energy Efficient Trustworthy Clustering Algorithm for WSN

  • Senthil, T.;Kannapiran, Dr.B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5437-5454
    • /
    • 2016
  • A Wireless Sensor Network (WSN) is composed of several sensor nodes which are severely restricted to energy and memory. Energy is the lifeblood of sensors and thus energy conservation is a critical necessity of WSN. This paper proposes a clustering algorithm namely Energy Efficient Trustworthy Clustering algorithm (EETCA), which focuses on three phases such as chief node election, chief node recycling process and bi-level trust computation. The chief node election is achieved by Dempster-Shafer theory based on trust. In the second phase, the selected chief node is recycled with respect to the current available energy. The final phase is concerned with the computation of bi-level trust, which is triggered for every time interval. This is to check the trustworthiness of the participating nodes. The nodes below the fixed trust threshold are blocked, so as to ensure trustworthiness. The system consumes lesser energy, as all the nodes behave normally and unwanted energy consumption is completely weeded out. The experimental results of EETCA are satisfactory in terms of reduced energy consumption and prolonged lifetime of the network.