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Abstract 
 

This paper presents an architecture for wireless sensor networks (WSNs) with blind source 
separation (BSS) applied to retrieve the received mixing signals of the sink nodes first. The 
little-to-no need of prior knowledge about the source signals of the sink nodes in the BSS 
method is obviously advantageous for WSNs. The optimization problem of the BSS of 
multiple independent source signals with complex and noncircular distributions from 
observed sensor nodes is considered and addressed. This paper applies Castella’s 
reference-based scheme to Novey’s negentropy-based algorithms, and then proposes a novel 
fast fixed-point (FastICA) algorithm, defined as the reference-signal negentropy complex 
FastICA (RSNT-cFastICA) for complex-valued noncircular-distribution source signals. The 
proposed method for the sink nodes is substantially more efficient than Novey’s quasi-Newton 
algorithm in terms of computational speed under large numbers of samples, can effectively 
improve the power consumption effeciency of the sink nodes, and is significantly beneficial 
for WSNs and wireless communication networks (WCNs). The effectiveness and performance 
of the proposed method are validated and compared with three related BSS algorithms through 
theoretical analysis and simulations. 
 
 
Keywords: wireless sensor networks, network architecture, complex fast independent 
component analysis, reference-signal negentropy cFastICA, noncircular signals, blind source 
separation 

 
This research was supported by the National Natural Science Foundation of China under the grants of No. 6117206  
61401506 and 6120242 and the China Postdoctoral Science Foundation under the grant of 2016M600349.  
 
http://doi.org/10.3837/tiis.2018.10.011                                                                                                          ISSN : 1976-7277 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018                             4815 

1. Introduction 

Wireless sensor networks (WSNs) are getting more and more concentration for their 
important theoretical and application values. One of the most important transmission strategy 
for the WSNs is for saving energy. Therefore, efficient collaborative signal processing 
algorithms that consume less energy for computation and communication are needed for the 
applications on WSNs. 

1.1 Literatures 
WSNs are composed of large number of sensor nodes that are densely deployed to their sink 

nodes to achieve signal sensing and transmitting, which is considered to be most important 
technology [1]. Recently, more and more works have been concentrated on wireless sensor 
networks because of its widely application to many important fields, such as industrial 
automation [2][3], agricultural modernization [4][5], space technology [6]-[8], information 
security [9], medical diagnosis [10], position location [11], transport [12], environment 
monitoring [13], and disaster warning [14]. Thus, the WSNs can be considered as the core 
components in achieving an overall sense of society and nature for human beings. Due to the 
ubiquitous and disorderly nature of electromagnetic signals, the sensing signals are interfered 
with by various noise sources and are difficult to distinguish. Thus, obviously, signal 
processing is very critical to the WSNs, as the sensing signals must be separated from 
complex-valued signals in the sink nodes [15]. The separation of multiple unknown sources 
from sensor nodes has been studied and applied in many areas such as the extraction of 
individual speech signals from a mixture of simultaneous speakers (the famous so-called 
‘cocktail party’ problem), elimination of the cross interference between horizontally and 
vertically polarized microwaves in wireless communications and radar systems, and 
separation of multiple telephone signals at a base station and so on. However, WSNs are 
designed to be low cost and limited power, which is the greatest advantage, but is also the 
drawback because the sensing and signal separation algorithms have to consider firstly the 
power consumption problem[16]-[18].  
    Blind source separation (BSS) is such a method aimed at recovering unknown sources only 
from their observed data. Because it requires little or even no prior information or a mixing 
matrix, BSS has been widely applied in a variety of fields such as telecommunication [19][20], 
seismic exploration [21], biomedical detection [22]-[24], sensor networks [25]-[28], sensing 
compress [29]-[31], and machine diagnosis [32]-[38]. In recent decades, in the case of a linear 
multi-input multi-output (MIMO) instantaneous system, BSS has corresponded to 
independent component analysis (ICA), which is a widely recognized concept [15][39]. The 
core assumption in ICA can be reduced to the statistically mutual independence of sources. 
Complex BSS and ICA have applications of enormous potential such as in WSNs and wireless 
communication networks (WCNs). In these above-mentioned applications, most of the 
sources may be both sub-Gaussian and super-Gaussian and may have circular (rotationally 
invariant) or noncircular distributions, specifically in the complex domain [31]. Certain 
sub-Gaussian signals of engineering interest that are easily affected by noncircularity such as 
quadrature amplitude modulation (QAM), binary phase-shift keying (BPSK), uniform 
distributions, and complex sinusoids. In this paper, we mainly consider the ICA model of BSS 
in the WSNs in the case of complex noncircular sources, especially sub-Gaussian signals.  
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Many solutions have been designed for performing complex-valued ICA with respect to 
noncircular distribution source signals. For example, in [40], Novey proposed gradientdescent 
and quasi-Newton algorithms for both circular and noncircular sources by utilizing analytic 
functions in a maximization of a non-Gaussianity framework. For noncircular sources that are 
especially sub-Gaussian, Novey’s quasi-Newton algorithm performs well by using full 
second-order information conveyed through both covariance and pseudocovariance matrices. 
Recently, Castella designed a family of contrast functions referred to as reference-based 
functions in [41], which are essentially the cross-Cumulant or cross-Statistics between 
estimated output signals and the so-called reference signals. An appealing feature in common 
with these referencebased contrast criteria is that the corresponding optimization algorithms 
are quadratic with respect to the searched parameters.  

1.2 Motivation and contributions 
From the analysis above, it can be seen that WSN forms a natural platform for effective and 
low cost BSS. Thus, more effective algrithms for source separation is of necessity and 
emergency. In this paper, to further effectively address the optimization problem of the BSS of 
multiple independent source signals with complex and noncircular distributions in WCNs, we 
propose to apply Castellas reference-based scheme in Noveys negentropy-based algorithms. 
And then we propose a novel fast fixedpoint (FastICA) algorithm for complex-valued 
noncircular distribution source signal. In addition, for simplicity, the new algorithm is defined 
as reference-signal negentropy complex-ICA (RSNT-cFastICA). The main advantage of this 
paper is that an architecture of the WSNs with BSS is presented; the RSNT-cFastICA 
algorithm is applied for this architecture and is substantially more efficient than Novey’s 
quasi-Newton algorithm [39] in terms of computational speed.  
    The main contributions of this paper are summarized as follows.  
    • The architecture of WSNs with BSS applied to solve the signal processing problems in the 
sink nodes is proposed first in this paper. And the architecture is also described and analyzed 
in detail. This will lead to our further study of the BSS problem for multiple WSNs.  

• RSNT-cFastICA is proposed to solve the BSS problem for the sink nodes of WSNs. The 
mustability of RSNT-cFastICA is theoretically analyzed and proven.  

• The effectiveness and performance of the proposed method are validated by comparing 
with three related BSS algorithms through simulations. This method is substantially more 
efficient than Novey’s quasi-Newton algorithm in terms of computational speed with large 
numbers of samples, can effectively improve the power consumption effeciency by the sink 
nodes, and is significantly effective in WSNs and WCNs. 

1.3 Structure and notations 

The remainder of this paper is organized as follows. The architecture of the WSNs and the 
complex ICA model are shown in Section II. The local stability of the reference-based contrast 
criterion is described and proved in detail in Section III. The RSNT-cFastICA algorithm is 
derived and analyzed in Section IV. Simulation results are illustrated in Section V. 
Conclusions can be found in Section VI.  

Notations: Bold lowercase and uppercase letters represent vectors and matrices. ( )T⋅  and 
( )H⋅  denote the transpose and Hermitian transpose of vectors or matrices, respectively. [ ]·E is 

the expectation operator. u v×R  and u v×C  stand for spaces of u v×  real and complex matrices. 
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( )f∇ ⋅  and ( )f∂ ⋅  denote the gradient and partial derivative of the function f  . uI  is the 

u u×  unit diagonal matrix. The operators  ⋅    and 
2

 ⋅   denote the absolute value and the 
2-norm of the Frobenius norm, respectively. The above-mentioned notations are shown in 
Table 1 as follows. 

Table. 1 Notations 
Notation Description Notation Description 

( )T⋅  transpose ( )f∇ ⋅  gradient 

( )H⋅  Hermitian transpose ( )f∂ ⋅  partial derivative 

[ ]·E  vector expectation operator 
uI  absolute value 

u v×R  u v×  real matrices  ⋅    absolute value 

u v×C  u v×  complex matrices 
2

 ⋅   2-norm of the Frobenius norm 

[ ]·E  scalar expectation operator   

 

2. Network Architecture and Complex ICA Model 
In this section, we mainly introduce the architecture of the WSNs and the complex ICA model. 
The architecture of the WSNs with BSS applied to solve the signal processing problems in the 
sink nodes is presented, described and analyzed in detail. And the block diagram of noise-free 
complex ICA in the sink nodes is also described and analyzed in detail. 

2.1 Network Architecture 
The architecture of WSNs with a separating module in the sink nodes is shown in Fig. 1, which 
consists of the sensor nodes, sink nodes and remote monitoring hosts (RMHs). The sink nodes 
receive, separate and transmit the signals of the sensor nodes to the RMHs. In this paper, the 
separating module in the sink nodes of the architecture employs the BSS method, and the ICA 
model is adopted to retrieve the signals from the sensor nodes. Obviously, the processing 
ability of the sink nodes is very important to the WSNs. The details are shown as follows.  

Sensor nodes: Sensor nodes are used to sense different dynamic physical quantities in 
various scenarios, and convert the obtained sensor data into electrical signals [15]. Each sensor 
field is assumed to contain N sensor nodes, and each sensor node is assumed to have a single 
antenna. Based on the property of wireless communications, the signals of sensor nodes are 
assumed to be statistically independent of each other. Due to the processing ability and power 
limit of the sensor nodes, sink nodes are required to gather the signals of sensor fields. 



4818                                                                Deng et al.: RSNT-cFastICA for Complex-Valued Noncircular Signals in Wireless 

 
Fig. 1. The architecture of wireless sensor networks with a separating modulein the sink nodes. 

 
Sink nodes: Sink nodes first receive the signals of the sensor nodes and noise sources from 

free space; then, they process the received noisy signals, ultimately transmitting the 
postprocessed signals to the RMHs. Each sink node is assumed to have M antennas and 
receive signals from its sensor field as shown in Fig. 1. As previously explained, the source 
signals of the sensor nodes are statistically independent, and the BSS method can be applied 
perfectly to separate the mixing received signals. Thus, there is little-to-no need of prior 
knowledge of the source signals of the sensor nodes, which is obviously advantageous in 
WSNs. Moreover, signal processing, such as signal separating and retrieving, in the sink nodes 
avoids final data centralization in the remote monitoring hosts; thus, a low data bit rate is 
achieved, and distributed signal processing algorithms can be applied.  
    Remote monitoring hosts: RMHs obtain the pre-processed information from the sink nodes 
and conduct further signal processing for the signals from the whole WSN.  
    Through the analysis above, it can be concluded that signal processing in the sink nodes is 
very important to the overall WSN. As a result, the block diagram of complex ICA for signal 
processing in the sink nodes is detailed in the following subsection.  

2.2 Complex ICA Model 
According to the fundamental principles of wireless communications, the block diagram of 
noise-free complex ICA in the sink nodes considered in this paper is shown in Fig. 2, which 
mainly includes unknown information of sources and the separating module. The source 
signals of the sensor nodes in the part of the unknown information of the sources, whether 
modulated or not, are going to be transmitted to the separating module, which represents the 
sink nodes in the WSNs in Fig. 1. In the separating module, each antenna receives N  mixing 
signals, which will be separated based on their differences in statistics (we used the 
independence of the source signals as the differences in statistics). Thus, the signals are 
obtained. The method in separating the signals successfully can be expressed for simplicity as 
followed. First, the statistics difference of the separated signals is calculated and weighted, if it 
equals that of the source signals, then the separation has been successfully achieved. 
Otherwise, the demixing matrix W  has to be iteratively adjusted basing the contrast criteria 
by BSS algorithms until it has achieved a satisfactory separating performance. 
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Fig. 2. Block diagram of complex ICA in sink nodes. 

 
The mixing signals are given by 

 ( ) ( )t t=x As ,                                                                           (1) 

where 1 1 1( ) [ ( ), ... , ( )] [ ( ) ( ), , ( ) ( )]T T
N r i Nr Nit s t s t s t is t s t is t=   = + … +s  is the source signal 

vector of the sensor nodes, and the mixing matrix M N×∈A R , which denotes the property of 
wireless channel between the sensor nodes and the sink node, is composed of an M-row 
vectors, i.e., 1 2[ , , , ]T

M= …A a a a . The observed signal vector of the sink node is denoted by 

1 1 1( ) [ ( ), , ( )] [ ( ) ( ), , ( ) ( )]T T
M r i Mr Mit x t x t x t ix t x t ix t= … = + … +x . For complex random 

source signal vectors, { }( ) { }( ){ }cov( ( )) ( ) ( ) ( ) ( )
H

t t t t t= − −s E s E s s E s denotes the 

covariance matrix; and the pseudocovariance matrix can be written as 

{ }( ) { }( ){ }cov( ( )) ( ) ( ) ( ) ( )
T

p t t t t t= − −s E s E s s E s . These two quantities together define 

the second-order statistics of a complex random vector. The source vector is second-order 
circular or noncircular if cov( ( )) 0p t =s  or cov( ( )) 0p t ≠s . A stronger definition of 
circularity is based on the probability density function (PDF) of the complex random variable,  
which can be found in [42]. 
    Similar to Eq. (1), we consider a separation operator, the output can be described as 

( ) ( )t t ,H=y W x                                                                    (2) 

in which M N×∈W R is the separating matrix containing N column vectors, i.e., 

1 2[ , , , ]N= …W w w w , and the output signal vector 

( ) ( ) ( )1 1 1t [ t , , t ] [ ( ) ( ), ... , ( ) ( )]T T
N r i Nr Niy y y t iy t y t iy t= … = +   +y  is the approximate 

estimation of the source signal vectors. Without loss of generality, we assume M N=  in this 
paper. 
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3. Contrast Criteria 
In this section, we introduce the reference signals and the contrast functions based on the 
reference signals at first. Then, we describe and prove in detail  the local stability of the 
reference-based contrast criterion.  

3.1 Reference Signals 
As shown in [40], the above-mentioned reference signals are defined as 

( ) ( )t t ,H=z V x                                                                          (3) 

where ( ) ( ) ( )1 1 1t [ t , , t ] [ ( ) ( ), , ( ) ( )]T T
N r i Nr Niz z z t iz t z t iz t= … = + … +z  is the reference 

signal vector. ( ) ( ) ( )1 1 1t [ t , , t ] [ ( ) ( ), , ( ) ( )]T T
N r i Nr Niz z z t iz t z t iz t= … = + … +z are in a 

similar form as ( )t (t)H=y W x . In addition, it should be noted that the initialization of V  
has an important influence on the performance of the algorithms. Moreover, the reference 
signals are artificially introduced in the algorithms for the purpose of facilitating the 
maximization of the contrast functions. Because no confusion is possible, and  for simplicity, 
in the following sections, we drop the time index of these vectors, which are denoted by 

, ,s x y and z , respectively. 

3.2 Contrast Functions 
First of all, we use the following definitions for random vectors throughout this paper. 

1 2
* * 2

1 1
2

1 1

,[ , , , ]
[ , , , , ]
[ , , , , ]

,
,

T N
N

T N
N N

R I R I T N
N N

u u u
u u u u
u u u u

= … ∈

= … ∈

= … ∈

u C
u C
u C

                                                             (4) 

where , 1, 2, ,R I
i i iu u ju i N= + = …  are the elements of u . 

 
Second, as defined in [42], the gradient and Hessian forms for a complex analytic function 

f  are expressed as 

0

0

0

2
2

0 *

( ) ,( )

( )( ) ,T

ff

ff

=

=

∂
∇ =

∂

∂
∇ =

∂ ∂

u
u u

u
u u

uu
u

uu
u u

                                                                  (5) 

where 

*

1 ,
2
1 .
2

R I

R I

f f fj
u u u
f f fj
u u u

∂ ∂ ∂ = − ∂ ∂ ∂ 
∂ ∂ ∂ = + ∂ ∂ ∂ 

                                                                  (6) 

    Finally, it was shown that for * * *
1 2( ) ( ) ( )p u f u x f u x= , where 1f  and 2f  are analytic 

functions, we have [42] 
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* * * *
1 2

* * *
1 2*

( ) ( ) ( ),

( ) ( ) ( ),

p u x f u x f u x
u

p u xf u x f u x
u

∂ ′=
∂

∂ ′=
∂

                                                           (7) 

where ' ( )( ) df uf u
du

= . 

    Then, the following contrast functions is given by 
2

( ) { ( ) },HJ G=w E w x                                                                       (8) 
*( , ) { ( ) ( ) },H HI G G=w v E w x v x                                                      (9) 

where J  is the negentropy proposed by Novey [41] and I  is the reference-based contrast 
function, which has been proposed by introducing reference signals into J . w  and v  are the 
column vectors of W  and V , respectively. The nonlinear functions G  are chosen as follows 
[39]: 

2
1

2

1 2 2

3 2 2

1 2 2 2 2

( ) sinh( ) ln( 1),

1
( ) ,

1 1

2 2 1
( ) ,

( 1 1) 1

G y a y y y

y y
g y

y y y

y y y y
g y

y y y y

= = + +

+ +
=

+ + +

+ + +
′ = −

+ + + +

                                      (10) 

2

2

2

( ) cosh( ) ,
2

( ) ,
2

( ) ,
2

y y

y y

y y

e eG y y

e eg y

e eg y

−

−

−

+
= =

−
=

+′ =

                                                        (11) 

   

1.25
3

0.25
3

0.75
3

( ) ,
( ) 1.25 ,
( ) 0.3125 ,

G y y
g y y
g y y−

=

=

′ =

                                                                    (12) 

where :G →C C . ig  and ig′  are the derivatives of iG  and ig respectively. The stability of 
the contrast function in Eq. (9) is proved in the next subsection. 

3.3 Stability Analysis 
In this subsection, we investigate the stability of ( , )I w v  by using a second-order 
approximation of ( , )I w v  around the stable points. The approximation performs well when 
the higher order terms of a Taylor series are negligible and the Hessian exists at the stable 
point [38]. The local consistency of ( , )I w v  is investigated under the constraint 2 1=w . 

We make the orthogonal change in coordinates H=p w A  and analyze the stability of such p . 
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Without loss of generality, we assume that the optimal solution is given by 

1 1 2[ , , , ] [ ,0, ,0]T j T
Np p p e θ= … = …p  in this paper. 

    Under the assumptions on sources, the observed signal variables , 1, 2, ,nx n N= …  in x  

are prewhitened using { }H =E xx I . As shown in the Appendix, the extrema for noncircular 
sources in the complex plane of 1

jp e θ=  is given by 

{ }
{ }

3 3

4 4

2 ( ) ( )1 ,
2 ( ) ( )

R I I R

R I

s s s s
n

s s

 +
= + 

 − 
θ π

E
E

                                       (13) 

and we obtain the condition along dimension 1p  for a minimum (resp. maximum) as 
2* 2 *

1 1 1 1 1
22 * *

1 1

2 { ( ) ( ) } { ( ) ( )
( ( ) ( )) },( . 0).

j j j j j
i

j j j
i

G e s g e s s s G e s g e s e
s G e s g e s e resp

− − −

−                                           

− > ′
+ <   ′

θ θ θ θ θ

θ θ θ

E E    (14) 

    Then, we extend the stability conditions with respect to 1p  to the other dimensions i.e., 

2 , , Np p…  by using the Hessian analysis. For a given source , 2, ,is i N= … , a local 
minimum (resp. maximum) is achieved when 

* 2 *
1 1 1 1 1{ ( ) ( ) } ( ) ( ) 0, ( . 0).j j j j j

iG e s g e s s e s G e s g e s respθ θ θ θ θ− − − ′− ± > <E          (15) 

    Note that in Eqs. (14) and (15), source 1i = is chosen as an example to show the 
source-to-source stability dependence and must be true for all source combinations, i.e., 
estimating source 1i = with given sources 2,3, ,i N= … . The stability proof in detail can be 
found in the Appendix. 
 

4. Derivation of RSNT-cFastICA Algorithm 
In this section, we mainly show the process to derive the RSNT-cFastICA algorithm and 
analyze its stability condition in detail based on the above section 3. 

Similar to [39] and  [41], the Lagrangian function under the constraint 1=w  is 
constructed as 

( , ) ( , ) ( 1),HL Iλ λ= + −w w v ww                                              (16) 
whereλ  is the real-valued Lagrange multiplier and 1=v  because v  updates following w . 
As shown in [39], we use the complex Newton update defined in [42]. 
    Then, the Newton iteration can be formulated as 

1
2

1 * *

1
2

* *

1
1

1

( , ) ( , )

( , ) ( , )

,

nn

nn

nn T

n T

n
n

n

L L

I I

λ λ

λ λ

−

+
==

−

==

+
+

+

 
 
 
 

               

    

∂ ∂= −
∂ ∂ ∂

∂ ∂= − + +
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=

    

w ww w

w ww w

w w

w

w w
ww ww w

w v w vw I w
w w w

w
w

              (17) 
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where Eqs. (4)-(7) are used. 

    Now, by multiplying both sides of Eq. (17) with complex Hessian
2

*

( , )
T

I
λ

∂
+

∂ ∂
w v I

w w
, 

we can further simplify Eq. (17) as 
2

1 * *

1
1

1

,( , ) ( , )

,

nn

n nT

n
n

n

I I
λ λ+

==

+
+

+

  ∂ ∂  = + − +    ∂ ∂ ∂   

=

w ww w

w v w vw I w v
w w w

ww
w

                           (18) 

where
2

* *

( , ) ( , ), T

I I∂ ∂
∂ ∂ ∂
w v w v
w w w

 are defined as the following Eq. (19) and Eq. (20), respectively. 

*
1

*
1

1

*
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*

( , )

( ) ( )( , )
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( , ) ,
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0
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H H
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x g GI
w

I

I x g G
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                                (20) 

*( ) ( )H Hg Gα ′= w x v x , g  and g′  are the derivatives of G  and g , respectively. 
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    Expanding and simplifying *

( , )I∂
∂
w v
w

 and 
2

*

( , )
T

I∂
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w v w
w w

by retaining the even-numbered 

rows, we have 
 

( )

*
1

*
*2

*

*

( ) ( )
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H H

H H
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H H
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x g GI g G

x g G
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Substituting Eqs.(21) and (22) into Eq.(17), we can reformulate Eq. (17) as follows: 
( )* * *

1

1
1

1

( ) ( ) { ( ) ( ) } { } ,

.

H H H H T
n n n n n n

n
n

n

g G g G+

+
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+

′= − +
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w E x w x v x E w x v x E xx w

ww
w

                (23) 

5. Simulation Results and Analysis 
In this section, we mainly illustrate and validate the separability, effectiveness and complexity 
of the RSNT-cFastICA algorithm based on anlytical and computer simulation results. 

5.1 Separability Analysis 
In this section, we explore the validity of the RSNT-cFastICA algorithm by choosing three 
noncircular 4-QAM signals as sources. Noncircular sources are generated with different 
values of real-to-imaginary asymmetry defined by 

2

2

{( ) }.
{( ) }

R

I

s
s

η =
E
E

                                                                (24) 

Then by providing a random phase shift, real-to-imaginary correlation values are obtained 
[40]. Here, source signals from sink nodes 3N = , real-to-imaginary asymmetry values 

10η = , and the number of samples 5000T =  are considered. The sources are shown in Fig. 
3. After mixing the sources using a random matrix, we obtain the mixed signals shown in Fig. 
4. Using RSNT-cFastICA algorithm with the nonlinear function 2G  in Eq.(11), we obtain the 
separations in Fig. 5. It can be clearly observed that the recovered signals in Fig. 5 are the 
estimations of sources in Fig. 3 up to permutation and scaling ambiguities. These inherent 
ambiguities are common to BSS problems and are insignificant in most practical applications, 
because most of the useful information of the signals is preserved in the waveforms of the 
signals. This problem is discussed in detail in the following works. 
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Fig. 3. Three noncircular source signals. 

 

 
Fig. 4. Three mixing signals 

 

 
Fig. 5. Three separated signals. 

5.2 Effectiveness Analysis 
    In this subsection, the performance of the proposed RSNT-cFastICA algorithm is verified 
using complex-valued sub-Gaussian and super-Gaussian sources with both circular and 
noncircular distributions. The performance of the RSNT-cFastICA algorithm using analytic 
functions 1G , 2G , and 3G  is compared with JADE [43], c-FastICA [44] using the contrast 
function ( ) log(1 )G y y= +  and quasi-Newton algorithm using Eq. (10) to Eq. (12) in [39].  
The definitions of JADE, C-fastICA, asinh, cosh, and 1.25z  are used for the latter algorithms 
and asinh R+ , cosh R+ , and 1.25z R+  are used for RSNT-cFastICA  in Fig. 6, 
respectively.  
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Fig. 6. Average IA  as a function of the asymmetry of the real-to-imaginary parts η  of eight complex 

sinusoidal sources. 
 

 
Fig. 7. Average IA  as a function of data length for a mixture of eight complex BPSK sources. 

 
    The normalized Amari index in [39] is used for the performance measurement. 
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where =P WQA  and Q is the whitening matrix. The lower the value is, the better the 
separation performance becomes, with 10 log 10 dB> −  IA  indicating that the algorithm is not 
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performing adequately. With respect to the computational speed, the execution time is used as 
the measurement criterion. The computer that we utilize is equipped Intel (R) TMCore 2 Duo 
CPU, E8400 @ 3.0 GHz, 2.99 GHz, and 3.00 GB of RAM. All simulations are averaged over 
100 runs with exactly the same matrices and sources realized on each run, and the simulation 
results are illustrated in Fig. 6 to Fig. 8. 

In Fig. 6, eight complex sinusoidal signals from 8N =  sensor nodes are considered as 
sources. The definition of noncircular sources with different values of real-to-imaginary 
asymmetry η  can be found in Eq. (24). The other corresponding parameters are as follows: 

500T =  and 0 1 2 310 ,10 ,10 ,10η = . In Fig. 7 and Fig. 8, we choose eight BPSK signals as 
sources. The corresponding parameters are as follows: N = 8 ，  and 

1000,2000,3000,4000,5000T = . 
    As observed from Fig. 6, for sub-Gaussian sources, the performance of the RSNT-cFastICA 
algorithm is close to that of the quasi-Newton algorithm, especially when η  is increasing, 
whereas C-fastICA performs worse. In other words, the proposed approach is approximately 
as efficient as the original approach in terms of separation quality, especially for noncircular 
sources. 

 
Fig. 8. Average execution time for retrieving eight complex BPSK sources. 

 
It can be observed clearly from Fig. 6 that all the algorithms perform equally well for BPSK 

sources except for C-fastICA. Their IA  values of them are less than -25 dB, especially when 
the number of samples increases, whereas the IA  of C-fastICA is approxiately -17 dB. It can 
be concluded that RSNT-cFastICA algorithm using asinh, cosh, and 1.25z  can provide an 
equal performance to Novey's quasi-Newton algorithm. 

However, from Fig. 8, it can be clearly observed that the execution time of the 
RSNT-cFastICA method using  1G , 2G , and 3G  is less than that of Novey's quasi-Newton 
algorithm, which is especially apparent with the increasing sample size. Combining with Fig. 
7, we can draw the conclusion that the proposed algorithm can provide an equal performance 
to the original quasi-Newton algorithm, especially for the sub-Gaussian sources that are 
noncircular. Moreover, the algorithm is substantially more efficient than the latter in terms of 
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computation speed with large numbers of samples, which can improve the power consumption 
effeciency of the sink nodes. 

5.3 Complexity Analysis 
As shown in Eq.(23), the core iteration step of our algorithm is 

( )* * *
1 ( ) ( ) { ( ) ( ) } { } .H H H H T

n n n n n ng G g G+ ′= − +w E x w x v x E w x v x E xx w                (26) 
And the corresponding step of Novey’s quasi-Newton algorithm is 

* *
1

* *

{ ( ) ( )} { ( ) ( )}
{ } { ( ) ( )} .

H H H H
n n n n n n

T H H
n n n

G g g g
G g

+

       

= −

+ 

+

′   

w E x w x w x E w x w x w
E xx E w x w x w

                       (27) 

    It can be observed that the difference term between Eqs.(26) and (27) is 
*{ ( ) ( )}H H

n n ng gE w x w x w , which is an increasing function of the number of sources, sample 
size, and the iteration time. When the iteration time and source size are fixed, the extra term 

*{ ( ) ( )}H H
n n ng gE w x w x w  increases with the increasing of the number of samples. Therefore, 

the computational cost of RSNT-cFastICA algorithm is less than that of Novey's 
quasi-Newton algorithm, especially when the number of sample increases. Together with the 
simulations above, it can be observed that, for RSNT-cFastICA, decreasing the computational 
cost is of equal effectiveness in obtaining improving of the power consumption effeciency of 
the sink nodes, which is obviously significant for WSNs and WCNs. 

6. Conclusion 
In this paper, the architecture of WSNs with BSS applied to solve the signal retrieving 
problems in the sink nodes was first presented, and each component of the architecture was 
analyzed in detail. Then by introducing the reference-based scheme to negentropy, the 
RSNT-cFastICA method was proposed to solve the complex-valued noncircular sources of the 
sink nodes in WSNs. Theoretical analysis showed that RSNT-cFastICA  not only contained an 
equal separation quality to Novey's quasi-Newton algorithm, but also presented its own 
advantage in that its computational speed was much higher than the latter especially when the 
number of samples was large, which was also validated by simulations. By comparing with 
JADE, c-FastICA and quasi-Newton algorithm under different conditions through simulations, 
the effectiveness of the RSNT-cFastICA method was proved. Simultaneously, decreasing of 
the computational cost of the proposed RSNT-cFastICA method leads to the improving of the 
power consumption effeciency in the sink nodes, which will obviously be significant when 
applied to WSNs and WCNs. Future work will include applying the underdetermined BSS 
method to WSNs to further improve the power consumption efficiency of the network. 

Appendix 
To investigate the local stability of the new contrast function I , we construct a Lagrangian 

function under the constraint 
2 2{ } 1H = =E w x w  as 

2*( , ) ( , ) ( ( )) { ( ) ( ) } ( 1),L I h G Gλ λ λ= + = + −p p q p E ps qs p                  (28) 

at the optimal solution 1 [ ,0, ,0]je θ= …p , whereλ  is the real-valued Lagrange multiplier and 
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2 1=q for q  updates following p . As shown in [42], the second-order necessary and 

sufficient conditions for a local minimum (resp. maximum) at 1 1[ , ]λp  are 

1 1( ) 0, ( ) 0,L Lλ λ∇ = ∇ =p p                                                  (29) 
and 

2
1( ) 0, ( . 0),Ht L t resp∇ ≥ ≤py p y                                           (30) 

with y  defining the feasible directions 1{ ( ) 0}Ht h t∇ =py p y  . Under the unit norm 

constraint, it can be seen that * *
1 1[ , ,0, ,0][ , , , , ] 0j j

N Ne e y y y yθ θ− … … =  is the feasible 

direction, which constrains * 2
1 1

jy y e θ−= −  and imposes no constraints on , 2, ,iy i N= … . 
    Under the assumptions on sources, the first term in Eq. (30) evaluating at 1p can be 
expressed as 

* * *
1 1 1 1 1 1

1 1

0 0
( ) ( )

( ) .0 0

0 0

G q s g p s s p
L λ

   
   
   
   ∇ = +
   
   
   
   

p p E
 

                                   (31) 

With respect to Eq. (28), using Eq.(4)-Eq.(7), we can obtain the expression evaluated at 1p  as 

1

22
1 1

0 0
0 0

( ) ,

0 0 N

L λ

… 
 … ∇ = +
 
 

… 

p

B
B

p E I

B
   

                                         (32) 

where 
2 * * *

1 1 1 10 ( ) ( )
.

0 0
i

i
s G q s g p s′ 

=  
 

B                                                            (33) 

and 
2 2 2 2

*
* * * *0 0 0,i j
i j i j i j i j

I I I Is s G g
p p p p p p p p
∂ ∂ ∂ ∂′=       =      =      =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
                        (34) 

are used. 
    Substituting 1

jq e θ=  and setting Eq.(32) to zero, we can obtain 
*

1 1 1 1{ ( ) ( ) } .j j jG e s g e s s eθ θ θλ − − −= −E                                               (35) 
    To find the solution of θ , the nonlinear function G  is expanded using MacLaurin 
series 2 1

2 1( ) k
kk

G x xα −
−∑ , where it is assumed that G  is an odd function and the ' sα  are the 

real-valued function-dependent coefficients. Then, the approximation estimation of Eq. (36) 
by using third-order MacLaurin series expansion is obtained as following, where the 
assumptions on sources are used. Because 1λ  is real-valued, the second and third terms in 

Eq.(37) must be real valued, which implies that 3 *arg( ) 2s s θ= . Combing with 
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* 3 3 4 4 3 3( )( ) ( ) ( ) 2 (( ) ( ) )R I R I R I R I I Rs s s js s js s s j s s s s= − + = − + + , θ  in Eq.(13) is 
obtained as 
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2 22 1 2 2
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To evaluate the condition in Eq.(31) at 1p , we substitute 1λ  in Eq. (36) and 1B  in Eq.(34) 

into the previous equations under the constraint 2
1 1 1[ , ]j Ty y e θ−= −y . Then, the condition 

along the dimension 1q  for a minimum (resp. maximum) is obtained as,  

22 *
1 1

2

2 2*
11 1 12 12
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1 1( ) ( ) },( . ),j j jG e s g e s e resp 
 
 

′ <θ θ θ

      (38) 

where Bij  is the thi  row and thj  column of B . Then, we evaluate the condition in Eq. (31) 

along the other dimensions * *
2 2[ , , , , ]N Np p p p… . As shown in [41], evaluating Eq. (31) for 

stability requires that each ( )0 , 2, ,i i Nλ+ = …B I  be positive definite for a local minimum 

and negative definite for a local maximum. The eigenvalues ( )1 11 1 12ieig B Bλ λ+ = + ±B I  

are real valued by inspection of the structure of , 2, ,i i N= …B . Therefore, the conditions 

along the dimensions * *
2 2[ , , , , ]N Np p p p…  for a local minimum (resp. maximum) are 

obtained as follows: 

  11 1 12

* 2 *
1 1 1 1 1

0,( . 0)

{ ( ) ( ) } ( ) ( ) 0,( . 0).j j j j j
i

B B resp

G e s g e s s e s G e s g e s resp− − −

+ ± > <

′⇒ − ± > <θ θ θ θ θ

λ

E
            (39) 

Finally, the stability proof of the reference-based negentropy in Eq. (9) has been completed. 
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