• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.023 seconds

Wavelet Based Compression Technique for Efficient Image Transmission in the Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 효율적인 이미지 전송을 위한 웨이블릿 기반 압축 기법)

  • Kwon, Young-Wan;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2323-2329
    • /
    • 2008
  • Advances in wireless communication and hardware technology have made it possible to manufacture high-performance tiny sensor nodes. More recently, the availability of inexpensive cameras modules that are able to capture multimedia data from the environment has fostered the development of Wireless Multimedia Sensor Networks(WMSNs). WMSN supplements the a advanced technique that senses, transmits, and processes the multimedia contents upon the text based traditional wireless sensor network. Since the amount of data which the multimedia contents have, is significantly larger than that of text based data, multimedia contents require lots of computing power and high network bandwidth. To process the multimedia contents on the wireless sensor node which has very limited computing power and energy, a technique for WMSN should take account of computing resource and efficient transmission. In the paper, we propose a new image compression technique YWCE for efficient compression and transmission of image data in WMSN. YWCE introduces 4 type of technique for motion estimation and compensation based on the Resolution Scalability of Wavelet. Experimental result shows that YWCE has high compression performance with different set of 4 type.

Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation

  • Jang, Shinae;Jo, Hongki;Cho, Soojin;Mechitov, Kirill;Rice, Jennifer A.;Sim, Sung-Han;Jung, Hyung-Jo;Yun, Chung-Bangm;Spencer, Billie F. Jr.;Agha, Gul
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.439-459
    • /
    • 2010
  • Structural health monitoring (SHM) of civil infrastructure using wireless smart sensor networks (WSSNs) has received significant public attention in recent years. The benefits of WSSNs are that they are low-cost, easy to install, and provide effective data management via on-board computation. This paper reports on the deployment and evaluation of a state-of-the-art WSSN on the new Jindo Bridge, a cable-stayed bridge in South Korea with a 344-m main span and two 70-m side spans. The central components of the WSSN deployment are the Imote2 smart sensor platforms, a custom-designed multimetric sensor boards, base stations, and software provided by the Illinois Structural Health Monitoring Project (ISHMP) Services Toolsuite. In total, 70 sensor nodes and two base stations have been deployed to monitor the bridge using an autonomous SHM application with excessive wind and vibration triggering the system to initiate monitoring. Additionally, the performance of the system is evaluated in terms of hardware durability, software stability, power consumption and energy harvesting capabilities. The Jindo Bridge SHM system constitutes the largest deployment of wireless smart sensors for civil infrastructure monitoring to date. This deployment demonstrates the strong potential of WSSNs for monitoring of large scale civil infrastructure.

Velocity and Distance Estimation-based Sensing Data Collection Interval Control Technique for Vehicle Data-Processing Overhead Reduction (차량의 데이터 처리 오버헤드를 줄이기 위한 이동 속도와 거리 추정 기반의 센싱 데이터 수집 주기 제어 기법)

  • Kwon, Jisu;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1697-1703
    • /
    • 2020
  • Sensor nodes that directly collect data from the surrounding environment have many constraints, such as power supply and memory size, thus efficient use of resources is required. In this paper, in a sensor node that receives location data of a vehicle on a lane, the data reception period is changed by the target's speed estimated by the Kalman filter and distance weight. For a slower speed of the vehicle, the longer data reception interval of the sensor node can reduce the processing time performed in the entire sensor network. The proposed method was verified through a traffic simulator implemented as MATLAB, and the results achieved that the processing time was reduced in the entire sensor network using the proposed method compared to the baseline method that receives all data from the vehicle.

An Energy-based PEGASIS Protocol for Efficient Routing in Wireless Sensor Networks (WSN에서의 효율적 라우팅을 위한 에너지 기반 PEGASIS 프로토콜)

  • Hyun-Woo Do;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.809-816
    • /
    • 2024
  • In a Wireless Sensor Network (WSN) environment, where numerous small sensors are arranged in a certain space to form a wireless network, each sensor has limited battery power. Therefore, the lifetime of each sensor node is directly related to the network's lifetime, necessitating efficient routing to maximize the network's lifespan. This study proposes a routing protocol based on PEGASIS, a representative energy-efficient routing protocol in WSN environments. The proposed protocol categorizes nodes into groups based on their distance from the sink node, forms multiple chains within each group, and selects the leader node for each group by comparing the remaining energy levels. The proposed method ensures that each group's leader node is the one with the highest energy within that group, which has been shown to increase the network's lifespan compared to the traditional PEGASIS method.

An EIBS Algorithm for Wireless Sensor Network with Life Time Prolongation (수명 연장 기능의 무선 센서 네트워크용 EIBS 알고리즘)

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.65-73
    • /
    • 2014
  • Since Time synchronization is also critical in Wireless Sensor Networks (WSN) like other networks, a time synchronization protocol for WSN called IBS(Indirect-Broadcast Synchronization) has been already proposed in 2012. As IBS operates in cluster tree topology, network lifetime may be mainly shortened by cluster head node[s], which usually consumes more power than cluster member (i.e. non-cluster head) nodes. In this paper, I propose enhanced version of IBS (called EIBS) which saves overall energy and prolongs network lifetime by re-constructing partial cluster tree locally. Compared with other tree construction approaches, this tree reconstruction algorithm is not only simpler, but also more efficient in the light of overall power consumption and network lifetime.

A Node Positioning Method for Minimizing the Overlap of Sensing Areas in Wireless Sensor Networks with Adjustable Sensing Ranges (가변 감지영역을 갖는 센서노드로 구성된 무선 센서 네트워크에서 중첩영역 최소를 위한 노드의 위치 결정방법)

  • Seong, Ki-Taek;Song, Bong-Gi;Woo, Chong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • In this paper, we address the node positioning method for minimizing the overlap sensing areas in wireless sensor networks with adjustable sensing ranges. To find a optimal node position, we derive a optimal equations by using the overlapped areas, each node's radiuses and expended angles of opposite neighboring nodes. Based on it, we devise a new node positioning method, called as ASRC(Adjustable Sensing Ranges Control). Unlike existing condition based model, our proposed method is derived from mathematical formula, and we confirm its validity through various simulations.

Research on Low-energy Adaptive Clustering Hierarchy Protocol based on Multi-objective Coupling Algorithm

  • Li, Wuzhao;Wang, Yechuang;Sun, Youqiang;Mao, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1437-1459
    • /
    • 2020
  • Wireless Sensor Networks (WSN) is a distributed Sensor network whose terminals are sensors that can sense and check the environment. Sensors are typically battery-powered and deployed in where the batteries are difficult to replace. Therefore, maximize the consumption of node energy and extend the network's life cycle are the problems that must to face. Low-energy adaptive clustering hierarchy (LEACH) protocol is an adaptive clustering topology algorithm, which can make the nodes in the network consume energy in a relatively balanced way and prolong the network lifetime. In this paper, the novel multi-objective LEACH protocol is proposed, in order to solve the proposed protocol, we design a multi-objective coupling algorithm based on bat algorithm (BA), glowworm swarm optimization algorithm (GSO) and bacterial foraging optimization algorithm (BFO). The advantages of BA, GSO and BFO are inherited in the multi-objective coupling algorithm (MBGF), which is tested on ZDT and SCH benchmarks, the results are shown the MBGF is superior. Then the multi-objective coupling algorithm is applied in the multi-objective LEACH protocol, experimental results show that the multi-objective LEACH protocol can greatly reduce the energy consumption of the node and prolong the network life cycle.

A Rate Control Scheme Considering Congestion Patterns in Wireless Sensor Networks (무선 센서 네트워크에서 혼잡 패턴을 고려한 전송률 조절 기법)

  • Kang, Kyung-Hyun;Chung, Kwang-Sue
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1229-1233
    • /
    • 2010
  • In event-driven wireless sensor networks, network congestion occurs when event data, which have higher transmission rates than periodic sensing data, arc forwarded to bottleneck links. As the congestion continues, congestion collapse is triggered, so most of packets from source nodes are failed to transmit to a sink node. Rate control schemes can be a solution for preventing the congestion collapse problem. In this paper, a rate control scheme that each node controls child node's data rate based on congestion patterns is proposed. Experiments show that the proposed scheme effectively controls network congestion and successfully transmits more event data packets to a sink node than existing rate control schemes.

Analysis for a TSP Construction Scheme over Sensor Networks (센서네트워크 상의 TSP 경로구성 방법에 대한 분석)

  • Kim, Joon-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.1-6
    • /
    • 2010
  • In Sensor Networks, the problem of finding the optimal routing path dynamically, which passes through all terminals or nodes once per each, may come up. Providing a generalized scheme of approximations that can be applied to the kind of problems, and formulating the bounds of the run time and the results of the algorithm made from the scheme, one may evaluate mathematically the routing path formed in a given network. This paper, dealing with Euclidean TSP(Euclidean Travelling Sales Person) that represents such problems, provides the scheme for constructing the approximated Euclidean TSP by parallel computing, and the ground for determining the difference between the approximated Euclidean TSP produced from the scheme and the optimal Euclidean TSP.

Performance Evaluation of CoAP-based Internet-of-Things System (CoAP 기반 사물인터넷 시스템 성능평가)

  • Choo, Young Yeol;Ha, Yong Jun;Son, Soo Dong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.2014-2023
    • /
    • 2016
  • Web presence is one of the key issues for extensive deployment of Internet-of-Things (IoT). An obstacle to overcome for Web presence is relatively low computing power of IoT devices. In this paper, we present implementation of an IoT platform based on Constrained Application Protocol (CoAP) which is a web transfer protocol proposed by Internet Engineering Task Force (IETF) for the low performance IoT devices such as Wireless Sensor Network (WSN) nodes and micro-controllers. To qualify the performance of CoAP-based IoT system for such an application as smart grid, we designed a test platform consisting of Raspberry Pi2, Kmote WSN node and a desktop PC. Using open source softwares, CoAP was implemented on top of the platform. Leveraging the GET command defined at CoAP specification, performance of the system was measured in terms of round-trip time (RTT) from web application to the Kmote sensor node. To investigate abnormal cases among the test results, hop-by-hop delays were measured to analyze resulting data. The average response time of CoAP-based communication except the abnormal data was reduced by 23% smaller than the previous research result.