• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.032 seconds

Fault Tolerant Clock Management Scheme in Sensor Networks (센서 네트워크에서 고장 허용 시각 관리 기법)

  • Hwang So-Young;Baek Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.868-877
    • /
    • 2006
  • Sensor network applications need synchronized time to the highest degree such as object tracking, consistent state updates, duplicate detection, and temporal order delivery. In addition, reliability issues and fault tolerance in sophisticated sensor networks have become a critical area of research today. In this paper, we proposed a fault tolerant clock management scheme in sensor networks considering two cases of fault model such as network faults and clock faults. The proposed scheme restricts the propagation of synchronization error when there are clock faults of nodes such as rapid fluctuation, severe changes in drift rate, and so on. In addition, it handles topology changes. Simulation results show that the proposed method has about $1.5{\sim}2.0$ times better performance than TPSN in the presence of faults.

A Simulated Annealing Algorithm for Maximum Lifetime Data Aggregation Problem in Wireless Sensor Networks (무선 센서 네트워크에서 최대 수명 데이터 수집 문제를 위한 시뮬레이티드 어닐링 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1715-1724
    • /
    • 2013
  • The maximum lifetime data aggregation problem is to maximize the network lifetime as minimizing the transmission energy of all deployed nodes in wireless sensor networks. In this paper, we propose a simulated annealing algorithm to solve efficiently the maximum lifetime data aggregation problem on the basis of meta-heuristic approach in wireless sensor networks. In order to make a search more efficient, we propose a novel neighborhood generating method and a repair function of the proposed algorithm. We compare the performance of the proposed algorithm with other existing algorithms through some experiments in terms of the network lifetime and algorithm computation time. Experimental results show that the proposed algorithm is efficient for the maximum lifetime data aggregation problem in wireless sensor networks.

Spatio-temporal Analysis using Real-Time Data Processing for Wireless Sensor Networks (무선 센서 네트워크에서 실시간 데이터 처리를 이용한 시공간 분석)

  • Baek, Jeong-Ho;Mun, Young-Chae;Lee, Hong-Ro
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.688-692
    • /
    • 2010
  • Wireless sensor network system collects and analyzes real-time data that have been requested by the many application nodes. This paper has constructed a sensor network cluster with various elements in the Gunsan City area of Jeollabuk-do, S.korea. The purpose of this paper is to utilize the constructed system in order to illustrate the real-time data in a diagram and analyze it to deduce the change ratio. The resulting analysis contents allow simple data interpretation by illustrating the data in change ratio by time, space, and motional directions. This analytical method will offer great benefit to those users using the wireless sensor network.

Improving Data Accuracy Using Proactive Correlated Fuzzy System in Wireless Sensor Networks

  • Barakkath Nisha, U;Uma Maheswari, N;Venkatesh, R;Yasir Abdullah, R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3515-3538
    • /
    • 2015
  • Data accuracy can be increased by detecting and removing the incorrect data generated in wireless sensor networks. By increasing the data accuracy, network lifetime can be increased parallel. Network lifetime or operational time is the time during which WSN is able to fulfill its tasks by using microcontroller with on-chip memory radio transceivers, albeit distributed sensor nodes send summary of their data to their cluster heads, which reduce energy consumption gradually. In this paper a powerful algorithm using proactive fuzzy system is proposed and it is a mixture of fuzzy logic with comparative correlation techniques that ensure high data accuracy by detecting incorrect data in distributed wireless sensor networks. This proposed system is implemented in two phases there, the first phase creates input space partitioning by using robust fuzzy c means clustering and the second phase detects incorrect data and removes it completely. Experimental result makes transparent of combined correlated fuzzy system (CCFS) which detects faulty readings with greater accuracy (99.21%) than the existing one (98.33%) along with low false alarm rate.

Policy for planned placement of sensor nodes in large scale wireless sensor network

  • Sharma, Vikrant;Patel, R.B;Bhadauria, HS;Prasad, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3213-3230
    • /
    • 2016
  • Sensor node (SN) is a crucial part in any remote monitoring system. It is a device designed to monitor the particular changes taking place in its environs. Wireless sensor network (WSN) is a system formed by the set of wirelessly connected SNs placed at different geographical locations within a target region. Precise placement of SNs is appreciated, as it affects the efficiency and effectiveness of any WSN. The manual placement of SNs is only feasible for small scale regions. The task of SN placement becomes tedious, when the size of a target region is extremely large and manually unreachable. In this research article, an automated mechanism for fast and precise deployment of SNs in a large scale target region has been proposed. It uses an assembly of rotating cannons to launch the SNs from a moving carrier helicopter. The entire system is synchronized such that the launched SNs accurately land on the pre-computed desired locations (DLs). Simulation results show that the proposed model offers a simple, time efficient and effective technique to place SNs in a large scale target region.

The energy efficient traffic control mechanism in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율적인 트래픽 제어 메커니즘)

  • Jang, Yong-Jae;Park, Kyung-Yuk;Lee, Sung-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2257-2264
    • /
    • 2011
  • Sensor nodes in Wireless sensor network have limited resources and consume almost all energy to the communication. For its traffic feature as a burst traffic type toward a sink node, it has high probability to network congestion. Network congestion causes packet drops and retransmission of dropped packets draws energy consumption. In particular, the loss of packet that is from the sensor node far away from a sink node requires additional energy consumption by frequent retransmission. This paper presents a traffic control mechanism that determines packet transfer by considering priority of packet and congestion level as well as hop count. Analysis of proposed mechanism by simulation demonstrated that it improved energy efficiency.

An Improved Two-Factor Mutual Authentication Scheme with Key Agreement in Wireless Sensor Networks

  • Li, Jiping;Ding, Yaoming;Xiong, Zenggang;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5556-5573
    • /
    • 2017
  • As a main component of Internet of Things (IoTs), the wireless sensor networks (WSNs) have been widely applied to various areas, including environment monitoring, health monitoring of human body, farming, commercial manufacture, reconnaissance mission in military, and calamity alert etc. Meanwhile, the privacy concerns also arise when the users are required to get the real-time data from the sensor nodes directly. To solve this problem, several user authentication and key agreement schemes with a smart card and a password have been proposed in the past years. However, these schemes are vulnerable to some attacks such as offline password guessing attack, user impersonation attack by using attacker's own smart card, sensor node impersonation attack and gateway node bypassing attack. In this paper, we propose an improved scheme which can resist a wide variety of attacks in WSNs. Cryptanalysis and performance analysis show that our scheme can solve the weaknesses of previously proposed schemes and enhance security requirements while maintaining low computational cost.

Multi-path Routing Protocol with Optimum Routes Finding Scheme in Wireless Sensor Networks

  • Keuma, Tae-Hoon;Bu, Ki-Dong;Kim, Hyun-Sung;Lee, Sung-Woon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.449-454
    • /
    • 2008
  • Finding an energy efficient route is one of the very important issues in the wireless sensor networks. The route scheme should consider both of the energy level of sensor nodes and the number of hops at the same time. First of all, this paper proposes an optimum routes finding scheme (ORFS), which could be used in the sensor network routing protocols. The scheme uses an optimum value for the path with the considerations of both the minimum energy level of a path and the number of hops at the same time. After that, this paper proposes a routing protocol based on the ORFS for how it could be used for the multipath directed diffusion with data aggregation (MDD-A), to get the better energy efficiency. The analysis result shows that the proposed routing protocol could lengthen the network life cycle about 18.7% compared to the previous MDD-A related protocols.

  • PDF

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

Super Cluster based Routing Protocol in Sensor Network

  • Noh Jae-hwan;Lee Byeong-jik;Kim Kyung-jun;Lee Ick-soo;Lee Suk-gyu;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.193-198
    • /
    • 2004
  • In variety of environments for applications, wireless sensor networks have received increasing attention in the recent few years. But, sensor nodes have many limitations including battery power and communication range. These networks require robust wireless communicant protocols that are energy efficient and provide low latency. In this paper, we propose new protocol as is defined SCP. The key idea of SCP is that only one node which is defined as a Super-Cluster Header sends the combined data to the BS. We evaluated the effectiveness of SCP through experiments which have several parameter violations. Simulation results shows that performance of SCP is through better than other legacy protocol within the framework of energy cost, life time of the sensor network and fair distribution of the energy consumption.

  • PDF