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Abstract 
 

Data accuracy can be increased by detecting and removing the incorrect data generated in 

wireless sensor networks. By increasing the data accuracy, network lifetime can be increased 

parallel. Network lifetime or operational time is the time during which WSN is able to fulfill 

its tasks by using microcontroller with on-chip memory radio transceivers, albeit distributed 

sensor nodes send summary of their data to their cluster heads, which reduce energy 

consumption gradually. In this paper a powerful algorithm using proactive fuzzy system is 

proposed and it is a mixture of fuzzy logic with comparative correlation techniques that 

ensure high data accuracy by detecting incorrect data in distributed wireless sensor networks. 

This proposed system is implemented in two phases there, the first phase creates input space 

partitioning by using robust fuzzy c means clustering and the second phase detects incorrect 

data and removes it completely. Experimental result makes transparent of combined 

correlated fuzzy system (CCFS) which detects faulty readings with greater accuracy 

(99.21%) than the existing one (98.33%) along with low false alarm rate.   

 

 

Keywords: Wireless sensor networks, robust fuzzy c- means clustering, proactive fuzzy 

system, data accuracy, correlation, combined correlated fuzzy system. 
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1. Introduction 

Wireless sensor networks face challenges in providing accurate data in base station. 

Anomalies are refined by increasing data accuracy in WSNs. In a group of data, some data 

may  follow a deviated pattern from the other data and are termed as "Anomalies". Dynamic 

environments are usually monitored by sensors over a period of time where the logs are 

created for future use. Self directed, minuscule and low power sensor nodes are presented in 

all WSNs. Sensing, Storing, Computing and Communication are the individual threads of 

sensor nodes [1]. All sensor nodes sense the available environment, save data in the main 

memory, interact the data between neighbor nodes and evaluate the computation process. 

They require energy for performing the above mentioned operations. Since the sensor node's 

battery capacity is very small, these energies should be  utilized only for important processes. 

According to G.J Pottie, the energy needed for communication is more than the energy 

needed for computation [2]. Transceivers send and receive packets by consuming smaller 

energy. All researches focus only on reduction in communication overhead while 

transmitting the packets but unwanted data transmissions reduce the energy used in WSNs 

[3]. In this context, data aggregation avoids  incorrect data in which sensors are designed to 

do so. It also tries to eliminate redundant data transmission by reducing the energy 

consumption of nodes. An important function of any WSNs is in analyzing the data which  is 

saved as log in the form of readings by sensor nodes.  

     Large numbers of highly correlated data are entailed by redundant data and energy is 

exhausted in larger amount which  again will be processed and  received by the base station. 

Network lifetime is increased by providing fused information and eliminating redundant 

transmission through data aggregation [4]. When anomalies are not detected during the data 

aggregation process, the data inaccuracy occurs [5]. Data aggregation uses cluster structure, 

where data travels from source to sink in a hierarchical way. The data collected by clusters 

from one or more cluster members is applied to aggregation functions. Sink often receives 

the aggregated value then and there. In this context, some faulty nodes may be present, 

which can produce incorrect readings and deviate the exact output.  

     In general, anomaly detection can be classified into prior knowledge based like statistical, 

rule-based etc., and prior knowledge free namely data mining, computational intelligence 

etc., An ideal anomaly detection system should increase the level of data accuracy in base 

station and cluster head. Prior knowledge free technique lacks in giving accurate anomaly 

detection due to missing quick updating of normal profile, high computational complexity by 

introducing complex machine learning algorithms and slow detection by developing training 

model with agents. Prior knowledge based approach like statistical based techniques provide 

good detection rate with less false alarm rate and it requires a mathematical model, which 

takes more computational time [6] [7]. To overcome these problems, a proactive fuzzy 

system is implemented by using rule based anomaly detection scheme which is developed 

based on mathematical assumptions and information predicted by experts. Fuzzy rule based 

anomaly detection system provides high  anomaly detection accuracy by generating 

confidence decision making rules and less computational complexity with fewer number of 

rules [10]. 

     In  the proposed system, the term "proactive" refers to a fuzzy system which is executed 

in each cluster head for avoiding duplicate and abnormal data before the data is being sent to 

base station. After removing the bad data, base station receives accurate information by 
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employing proactive system which is implemented in distributed fashion. Two levels of 

anomaly elimination process are dealt in this paper. The first level concentrates on finding 

faulty nodes in individual sensor nodes. The second level expresses mediator node's logs and 

based on those logs it finds the faulty mediator nodes and discard those nodes over the 

distributed networks. Fuzzy c-means clustering focus on creating input space for the fuzzy 

system. Input space partitioning acts as an input for the proposed proactive fuzzy system. 

Anomaly will be discovered by applying fuzzy logic with all qualified correlation techniques 

like spatial, temporal and attribute correlation. The leftovers of the paper are organized as 

follows: Section 2 is endowed with some important connected concepts needed for our 

proposed algorithm. Section 3 explains the network model and problem statement. Section 4 

presents the proposed approach and methodology. Section 5 infers the experimental 

evaluation based on both synthetic and real data sets. Finally section 6 elucidates the future 

work by concluding the paper. 

2. Related Work 

Anomaly detection and removing noisy data in wireless sensor networks have been 

examined in varieties of research works [6]. Existing anomaly detection techniques can be 

categorized into two stream classes. The first stream uses supervised learning that formulates 

prior knowledge in developing a customary profile. The second stream is placed on an 

unsupervised learning to develop a customary profile that is generated based on prior 

knowledge of sensed data. In clustered sensor architecture, nodes perform different roles like 

sensing and leading node. The leading node or cluster head performs aggregation and 

sensing nodes sense the reading at different time slots. Cluster generation can be performed 

by various conventional clustering protocols like LEACH, HEED [8] [9] etc., The existing 

clustering protocols separate the nodes based on Euclidean distance metrics without 

considering the correlation distance among the sensor nodes which lead to informal cluster 

formation where clusters will not guarantee in providing reliable and accurate data to base 

station. To overcome this issue, a robust fuzzy c-means clustering is proposed for effective 

cluster formation with less computational complexity. 

 Previous works attempt  in anomaly detection  by aiming specifically in classifying 

the data as correct or incorrect without analyzing logic and originally happened event status 

in the environment. Daniel et al.[11] have proposed classification based voting method for 

anomaly detection. They have proposed five different classifiers that are used to detect 

anomaly with reliable estimations to replace the measurement affected by anomalies. This 

method fails in cases where large dataset are considered. Suat et al [12] have focussed data 

aggregation and authentication protocol for security, confidentiality and false data detection.  

It also reduces communication complexity upto 60% and computational complexity is 

increased. The author in [13] proposed a statistical data analysis for outlier detection on high 

dimensionality data with high false negative which fails to focus neither on spatial 

correlation nor spatio-temporal correlation. Janakiram et. al [14] presents a technique based 

on bayesian belief network to identify local anomalies by focusing on spatial and temporal 

with attribute correlation based on conditional probability for detecting anomaly effectively. 

This method is not suitable for dynamic network topology. Fuzzy system concludes its 

results based on decisions  made by fuzzy inference system. 

 Chitradevi et.al [15] proposed  anomaly detection based on distributed 

agglomerative clustering approach where anomaly is removed both at local  and global level. 

Cluster distance and density measures are used to form optimal cluster thereby removing 
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anomalies with affordable computational and communication complexity. Yanz zhang et al. 

[16] have proposed an ellipsoidal based support vector machine, which classifies sensor node 

data as anomaly by using ellipsoidal SVM based online anomaly detection and adaptive 

anomaly detection for multivariate data. They used the time window concept for identifying 

changes in normal behavior of the system. This technique suffers from some computational 

complexity due to updating a normal profile periodically. Y.Zhang et.al [17] proposed a 

statistical based outlier detection which is  based on time series and geostatistics analysis 

with spatial and temporal correlation concepts. Their way of modeling temporal correlation 

by fitting auto regressive moving average (ARMA) model and spatial correlation model is 

developed by using variogram model. Krasimira kapitanova's et al. [18] proposed general 

fuzzy logic system for event detection by using spatial and temporal semantics. They 

decrease the number of rules by combining simple rules and trimming unwanted rules in rule 

base system. They used fuzzy logic instead of taking fixed thresholds and crisp values, 

which improve the accuracy of fire event detection. Liang et. al [19] proposed a double 

sliding window detection to increase the detection rate of event detection. However, they 

elaborate the effect of fuzzy logic  and  the power of spatial and temporal possessions of the 

data  in classifying of detection rate. The authors Heshan Kumaragea et al. [20] proposed a 

fuzzy data modeling for distributed anomaly detection in different real data sets. Scalability 

and sensitivity of this approach are low while considering a large number of nodes. 

     From the literature survey, It is evident that an ideal anomaly detection system should 

produce high accuracy with minimal energy consumption. The proposed method has three 

main contributions. First, an input space partitioning is created by using robust fuzzy c-

means clustering that results in forming more accurate clusters. Second, sensor's space, time 

and attribute correlation acts are incorporated into the fuzzy logic rule-base to further 

improve the accuracy of anomaly detection. Third, rules generated by rule based system are 

reduced by applying rule trimming function without affecting the detection rate of the system. 

3. Network Model and Problem Statement 

 A distributed heterogeneous WSN is considered where enormous number of sensor nodes 

with limited power resource senses the physical phenomena and the little number of 

aggregator nodes perform anomaly detection with data aggregation. The network topology 

which uses undirected graph is considered G(S,E) where S represents sensor nodes and E as 

edges that connects two nodes within a cluster. It is assumed that sensor nodes and base 

station are fixed after deployment and each sensor has a separate identifier. Fig. 1 presents 

the sensor network's topology. Initially, all nodes perform the clustering operation on their 

own local data. An appropriate clustering protocol for implementing distributed clustered 

wireless sensor network is proposed, where the deployment area is grouped into several 

clusters. Each cluster head performs distributed data aggregation from the cluster members, 

where data aggregation reduces unwanted data transmission and increases the level of data 

accuracy by eliminating duplicate and unwanted data.  
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Fig. 1. Distributed clustered network representation  

 

The aim is to perform anomaly detection and separate anomalous data in each cluster of the 

network. Let Ck denote numbers of clusters where each cluster is having n numbers of sensor 

nodes i.e { S1, S2, S3 .......... Sn ϵ Ck} and each cluster head is interconnected with all other 

cluster heads in the network. An denote  number of attributes involved in multi sensor nodes 

i.e { A1 A2, A3 .......... An € Sn } where, each attribute has partial or full dependency with 

other attributes. In the first phase of  the proposed system, energy consumption is reduced 

with single-hop distance between the node and cluster head by applying the robust fuzzy c-

means clustering. In the second phase, a fuzzy based comparative correlation technique is 

implemented and it removes unwanted data transmission by eliminating the anomalous data 

that are characterized as observations from a given sensor that are corrupted due to  sensor 

malfunction.  

4. Proposed Methodology 

The proactive anomaly detection system starts by input space partitioning, where robust 

fuzzy c-means clustering is employed and it ends by detecting incorrect data accurately and 

removing it entirely by employing correlative fuzzy logic algorithm. By testing the 

conventional techniques, it is  inferred that it ensures whether the data is incorrect or not and 

does not concentrate on analyzing the event based approach. To solve this issue, a fuzzy 

logic is put into practice with correlation technique for extracting the different regions for 

analyzing erroneous, suspicious and acceptable sample data generated by sensor nodes at 

different point of time.  

4.1 Fuzzy Logic System 

The proposed fuzzy classification system includes two basic steps. First step explains 

Cluster 3 

Le
ve

l 1
 

S3 

S4 

S5 

CH3 

S6 S8 

S7 

S9 

CH5 

CH4 

Base Station 

Cluster 1 
Cluster 2 

CH1 CH2 

S2 

S1 

S11 

S10 

Le
ve

l 2
 



3520              Nisha U et al.: Improving Data Accuracy Using Proactive Correlated Fuzzy System in Wireless Sensor Networks 

structure confirmation process which contains robust fuzzy c-means algorithm based on 

robust mahalanobis distance and new dissimilarity function. In second step, fuzzy inference 

engine classifies the input sample according to fuzzy rule set and reasoning method 

generated by fuzzy-spatial, fuzzy-temporal and fuzzy-attribute correlation acts. The proposed 

method is summarized in Fig. 2. Fuzzy system is characterized by a set of linguistic 

statements based on experts knowledge. The experts knowledge are usually in the form of 

“if-then” rules [21][22]. Fuzzification process converts the crisp input into fuzzy 

membership function and fuzzy inference system performs rule decision making and de-

fuzzification converts fuzzy output into crisp output. 

 
Fig. 2. Framework model of Proactive Fuzzy system with anomaly detection 

 

4.2 Robust Fuzzy C-means Clustering 

The conventional Fuzzy c-means (FCM) clustering analysis is applied to assemble same 

type of data in one cluster where the similar form of data should be near, and the dissimilar 

form of data should be farer. It can hold lot of information about the data than hard k- means 

clustering algorithm [23] [24]. FCM uses the Euclidean distance concept and simple cost 

function for cluster formation. The cluster heads are responsible for collecting data from the 

group and conveying to the next level cluster head or base station finally for detection. A 

variety of fuzzy clustering methods have been proposed and most of them are based on 

distance criteria [25] [26]. 

Clustering partitions a dataset into several groups in such a manner that the similarity 

within a group is larger than that among its peers. In the proposed robust fuzzy c-means 

clustering (RFCM), the concept of robust mahalanobis distance and new cost function based 

on typicality measure and density measure are used. The distance of the vector from the 

centroid in a multidimensional space is defined by the term "Robust Mahalanobis Distance 

(RMD)" represented by a correlated independent variable [27]. Cost function is calculated by 

using distance and density measures. RFCM partitions the number of sensor nodes into 

different fuzzy groups. Let  be a set of sensor nodes. Each node Si senses m 

number of physical phenomena like light, voltage and humidity, such that  

The process of clustering is to assign the sensor nodes into number of 

clusters ( ) where  by using distance metrics and dissimilarity function 

[28]. 
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Step 1: Initialize the membership matrix G which is allowed to have elements with values 

between     0 and 1. 

 
 

 RFCM allows each feature vector  belonging to every cluster with a fuzzy truth 

value ranging  between low (0) and high (1) and  denoting cluster center. 

 

Step 2: Calculate centroids of fuzzy cluster centers  where, i=1, 2... n 

 

 
 

   where p is the degree of fuzzification. 

 

Step 3: Compute dissimilarity function for RFCM based on density and typicality 

measures. It replaces conventional fuzzy c-means clustering distance (Euclidean distance) 

with RMD.  

 

 Step 3.1: Compute typicality measure . 

 

 (3) 

 

where, n is the number of training data,  is the number of clusters,  membership 

of sensor node i in cluster k and  is expressed as follows: 

 

                        (4) 

 

                            (5) 

 where  is the sample standard deviation of . 

 

 Step 3.2: Compute density measure . 

(6) 

 

 Where,  is the distance between i and j which indicates position of sensor nodes. 

 

 Final dissimilarity function is optimized by iterating    using equation 3 

and 4. 

 

 



3522              Nisha U et al.: Improving Data Accuracy Using Proactive Correlated Fuzzy System in Wireless Sensor Networks 

    and 

 

(8) 

 

Step 4: Compute new membership function  

 

                                                                                 (9) 

 

where p is the degree of fuzzification,  are calculated by using equation 4. The 

cluster centers  and the membership  are optimized by using RFCM. 

 

4.3 Anomaly Detection using Fuzzy Reasoning based on Correlation Acts 

Sensors should be continuously monitored where anomaly is available and the readings are 

taken from multiple sensors over a period of time since they are considered to be highly 

dependable and volatile. While analyzing the existing methods it is understood that no 

methodology is implemented by applying fuzzy logic with attribute, spatial and temporal 

correlation to anomaly detection. Hence fuzzy logic is applied with comparative correlation 

techniques for classifying of error and originally happened events. Anomaly detection is the 

combined output of all physical phenomena's readings in time and spatial location and is the 

rate of change of all attributes used in the sensor deployment area. Fuzzy reasoning for 

anomaly detection uses various linguistic variables for spatial, temporal and attribute acts. 

The outputs of the three separate techniques are given as input to the proactive anomaly 

detection system which will classify the percentage level of anomalies present in the 

environment and named them as superior, doubtful and inferior respectively. 

4.3.1 Spatial Act  

Spatial act is commonly known as the relationship among the nearest neighbor node 

readings. To make the system accurate and reduce the false alarm, an anomaly detection 

system needs to be designed with care [29]. For this, various readings from multiple sensors 

are included at various time intervals. There lies a negative correlation between the true 

probability report and the distance among the reported sensors. Hence while dealing with 

anomaly detection logic, spatial location concepts are added [30]. The spatial protector or 

linguistic variable is augmented with the rules in the rule-base.  This spatial act rule is 

applied at each cluster generated by robust fuzzy C-means algorithm. Fig. 3 shows the 

confidence decision making of spatial act. In Table 1 three linguistic variables are declared 

as Hold (H), Remote (R), and Farthest (F). These are used to analyze the sensor's farthest 

distance. The format of the rules and membership function µSA(d) described in spatial act  are 

as follows: 
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IF S1 is H and S2 is H and S3 is H ...... and Sn is H; 

THEN Correlation assurance level is HSA 
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The assurance levels of spatial act are classified as Low Spatial Act (LSA), Medium 

Spatial Act (MSA) and High Spatial Act (HSA) where, LSA denotes too farthest nodes, 

MSA comprises of nodes which fall between nearer and farthest nodes and HSA comprises 

of nodes which are too nearer. 

 
Fig. 3. Decision making of spatial act 

 
Table 1. Spatial Act Rule Structure 

Rule®  S1 S2 S3 S4 S5 ……. Sn-1 Sn Assurance Level 

1 F F F F F ……. F F LSA 

2 F F F F F ……. F R LSA 

3 F F F F F ……. F H LSA 

4 F F F F F ……. R F LSA 

α ⁞ ⁞ ⁞ ⁞ ⁞  ⁞ ⁞ ⁞ 

     …….    

α+1 R R R R R ……. R R MSA 

α+2 R R R R R ……. R F MSA 

α+3 R R R R R ……. R H MSA 

α+4 R R R R R ……. F R MSA 

β ⁞ ⁞ ⁞ ⁞ ⁞  ⁞ ⁞ ⁞ 

         

β +1 H H H H H ……. R H HSA 

β +2 H H H H H ……. H F HSA 

β +3 H H H H H ……. H R HSA 

β +n H H H H H ……. H H HSA 
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considered in order to decrease the false alarms. The sensor readings indicate a particular 

data generated at short interval of time to achieve high anomaly detection confidence. 

Anomaly detection confidence is increased whenever the temporal distance between the 

sensor readings decrease and vice versa. The inherent nature of sensor communication makes 

the temporal work specifically important [29]. The temporal defender is applied at each 

cluster generated by robust fuzzy c-means algorithm. Fig. 4 shows the confidence decision 

making of temporal act. In Table 2 three variables are declared as Diminutive (D), Average 

(A), and Extensive (E).These are used to analyze the sensor's readings time difference. The 

assurance levels of temporal act are classified as Low Temporal Act (LTA), Medium 

Temporal Act (MTA), and High Temporal Act (HTA) where, LTA denotes too longer time 

duration of readings, MTA covers the node's reading which falls between short and wide 

time difference and HTA consists of sensor nodes readings generated with shorter duration. 

The format of the rules and membership function µTA(t)  described in temporal act  are as 

follows: 

IF S1 is D and S2 is D and S3 is D ...... and Sn is D; 

THEN Correlation assurance level is HTA 
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Temporal act can be processed on same sensor readings at different time interval or a node's 

reading is analyzed with its neighbor node's readings with same time duration.  

 
 Fig. 4. Decision making of temporal act 

 
 Table 2. Temporal Act Rule Structure 

Rule ®  S1 S2 S3 S4 S5 ……. Sn-1 Sn Assurance Level 

1 E E E E E ……. E E LTA 
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α+4 A A A A A ……. E A MTA 

β 

 

 

⁞ ⁞ ⁞ ⁞ ⁞  ⁞ ⁞ ⁞ 

         

β +1 D D D D D ……. A D HTA 

β +2 D D D D D ……. D E HTA 

β +3 D D D D D ……. D A HTA 

β +n D D D D D ……. D D HTA 

 

4.3.3 Attribute Act 

Attribute act can be expressed as the relationship among the sensed physical phenomena 

of sensor nodes. Basically, common relationship should exist among the physical phenomena 

like temperature and pressure in multi sensor node [14]. The proposed anomaly detection 

system's accuracy is increased by incorporating attribute act with spatial and temporal 

correlation acts. Multi-sensor senses the number of readings with respect to number of 

attributes (An) sensed by the node. Fully dependent attribute values should be coherent with 

each other. For this reason, when dealing with anomaly detection logic, attribute cohesive 

concepts are added. The attribute shield is augmented with the rules in fuzzy reasoning. This 

attribute act rule is applied at each node in the cluster generated by RFCM algorithm. Fig.5 

shows the confidence decision making of attribute act. In Table 3 three variables are 

declared as Low Coupling (LC), Medium Coupling (MC), and High Coupling (HC). These 

are used to analyze the dependency of attributes readings. The format of the rules and 

membership function µAA(c) described in attribute act is as follows: 

 

IF A1 is HC and A2 is HC and A3 is HC ...... and  

An is HC; 

THEN Correlation assurance level is HAA 
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The assurance levels of attribute act are classified as Low Attribute Act (LAA), Medium 

Attribute Act (MAA) and High Attribute Act (HAA) where, LAA denotes less dependency, 

MAA comprises of semi-dependency  among the attributes and HAA expresses the full 

dependency relationship among the attribute values of sensor node. 
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Fig. 5. Decision making of attribute act 

 
 

Table 3. Attribute Act Rule Structure 
Rule®  A1 A2 A3 ……. An-1 An Assurance Level 

1 LC LC LC ……. LC LC LAA 

2 LC LC LC ……. LC MC LAA 

3 LC LC LC ……. LC HC LAA 

4 LC LC LC ……. MC LC LAA 

α ⁞ ⁞ ⁞  ⁞ ⁞ ⁞ 

       

α+1 MC MC MC ……. MC MC MAA 

α+2 MC MC MC ……. MC HC MAA 

α+3 MC MC MC ……. MC LC MAA 

α+4 MC MC MC ……. HC MC MAA 

β ⁞ ⁞ ⁞  ⁞ ⁞ ⁞ 

       

β +1 HC HC HC ……. MC HC HAA 

β +2 HC HC HC ……. HC LC HAA 

β +3 HC HC HC ……. HC MC HAA 

β +n HC HC HC ……. HC HC HAA 

 

4.3.4 Anomaly Detection with Comparative Correlation Act  

Anomaly detection with comparative correlation system comprises spatial, temporal and 

attribute acts. Test data is evaluated by using proactive fuzzy system. In Table 4 three 

correlation act's assurance level are declared as linguistic variables for final proactive 

anomaly detection system. Fig. 6 shows the final decision making process with combined 

correlation acts. The anomaly assurance levels of the proposed system are classified as 

Inferior Nodes (IN), Doubtful Nodes (DN) and Superior Nodes (SN). Anomaly detection 

assurance level is judged by self-assurance of Spatial Act (SA), Temporal Act (TA) and 

Attribute Act (AA). The format of the rules described in anomaly detection engine is as 

follows: 
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Fig. 6. Framework model of Anomaly with correlation acts 

 
Table 4. Anomaly detection rule structure 

Rule®  SA TA AA Anomaly Assurance 

Level 

1  LSA LTA LAA IN 

2  LSA LTA MAA IN 

3  LSA LTA HAA IN 

4  LSA MTA LAA IN 

5  LSA HTA LAA IN 

6  LSA MTA MAA SN 

7  LSA MTA HAA DN 

8  LSA HTA MAA SN 

9  LSA HTA HAA DN 

10  MSA LTA LAA IN 

11  MSA LTA MAA SN 

12  MSA LTA HAA DN 

13  MSA MTA LAA SN 

14  MSA HTA LAA DN 

15  MSA MTA MAA SN 

16  MSA MTA HAA SN 

17  MSA HTA MAA DN 

18  MSA HTA HAA SN 

19  HSA LTA LAA IN 

20  HSA LTA MAA DN 

21  HSA LTA HAA SN 

22  HSA MTA LAA DN 

23  HSA HTA LAA DN 

24  HSA MTA MAA SN 

25  HSA MTA HAA SN 

26  HSA HTA MAA SN 

27  HSA HTA HAA SN 

 

4.3.5 Mitigating Correlation Rules 

 The number of correlation rules generated by fuzzy rule mining technique can be 

large. Large number of rules may contain tedious rules that may mislead the classification 

process and they may increase the computation time to classify the anomaly [31] [32]. 

Trimming repetitive and unsuitable rules will  increase the accuracy of the performance of 

the proposed system. The following three rule mining conditions are examined in removing  

unimpressive rules . 

 

SN 

DN 

IN 

SA TA AA 

Analyze Comparative 

Correlation Confidence level  

(SA&& TA&&AA) 

(0% - 50% -100%) 

 Anomaly Detection 

Confidence Level  

Data Sent to BS or 

next level cluster 

Isolate the Data & 

Remove  

Isolate the Data & 

reanalyse by Fuzzy System 
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1. First, eliminate specific rules and  retain only the general rules with high confidence. 

i.e Joining rules with akin conclusion. 

  It is assumed that there  are two rules only 

  ® 1:  X ⇒ Z and ® 2: Y ⇒ Z and X⊆Y, first rule  ® 1 is the general  rule  

  and  accepted if  

a. the confidence of ® 1 is greater than the confidence of ® 2 or  

b. the confidence of ® 1 is equal to the confidence of ® 2 but 

support  of  ® 1 is  greater than support of ® 2 or 

c. both the confidence and support of ® 1 is equal to the 

confidence and support of ® 1 and ® 1  ® 2 then ® 2 is 

eliminated.  

2. Second, the controversy rules like ® 1: X ⇒ Y and ® 2: X ⇒ Z are also be eliminated. 

3. Third, remove imperfect rules which do not satisfy the spatial,temporal and attribute 

restrictions. i.e every possible combination of input variables should be analyzed by 

each rule in fuzzy inference system. 

 

In this work, these three rule mining conditions are considered to eliminate duplicate, 

uninteresting and controversial rules and produce a trimmed set of rules. Final Rules are 

stored in the transactional database which has been used for building a new proposed 

anomaly detection.  If none of the rules in the rule-base is persuaded, we pioneer a default 

rule is pioneered. 

5. Experimental Classification Results and Analysis 

 

The proposed proactive anomaly detection system is tested using both synthetic and real data 

sets. In this section, these experiments and the results are described. This is performed in 

terms of anomaly detection rate or sensitivity, specificity and false alarm rate for both clean 

and unclean data sets. The algorithm on two real-life data sets is evaluated. The first dataset 

is obtained from Intel Berkeley Research Lab (IBRL) [33] and the second dataset is obtained 

from SensorScope project, which was located at the Grand-St-Bernard (GSB) pass at 2400 m 

between Switzerland and Italy [34]. Fig. 7 shows the deployment location of sensor nodes in 

the IBRL. Fig. 8 shows the deployment location of sensor nodes in the Grand St. Bernard 

deployment. In addition, comparative analysis is also performed between the proposed 

system and the work in [20] to check the rare effectuation of the proposed anomaly system.  

 
Fig. 7. Sensor nodes in IBRL deployment 

 
Fig. 8. Sensor nodes in GSB 
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5.1. Performance Evaluation 

 The performance of the proposed anomaly system is evaluated in terms of overall 

accuracy, sensitivity, specificity, positive predictive value and negative predictive value. 

Overall accuracy is the ability of the proposed system to detect the anomaly correctly. 

Sensitivity or Detection rate is the ability of the system to detect positive (abnormal) cases. 

Specificity is the ability of the system to detect negative (normal) cases. False Alarm Rate 

(FAR) is the ability of the system to detect positive (normal) cases. Positive Projection Rate 

(PPR) is defined as the proportion of positive test results that are true positives and Negative 

Projection Rate (NPR) is the proportion of those with a negative test result. The measures are 

described below: 

  

  

  

 

where TP, TN , FP and FN are referred to True Positive rate (abnormal data correctly 

classified) ,True Negative rate (normal data correctly classified), False Positive rate (normal 

data classified as abnormal)  and  False Negative rate (abnormal data classified as normal 

one) respectively. 

 

5.2. IBRL Dataset 

IBRL data set is analysed, which has 54Mica2Dot sensors with 4 attributes, during the 720 

hours period between 28
th
 February 2004 and 5

th
 April 2004. During the 30 day period, the 

54 sensors collected about 2.3 million readings [33]. The data in the data set is sticked at the 

time of exportation, namely March 2004 during the time interval 00:00 am to 03:59 am. The 

skeleton structure of the data set is illustrated in Table 5. Only three features are considered 

namely temperature, humidity and voltage. Particularly variations in voltage are highly 

correlated with temperature. 

Table 5. Skeleton Structure of Intel Lab Data Set 

date: 

yyyy-

mm-dd 

time: 

hh:mm:ss.xxx 

epoch:int moteid:int temperature: 

real 

humidity: 

real 

light: 

real 

voltage 

:real 

 

The synthetic data is also generated for the above said features by using the multivariate 

random generation function with different corruption level for checking scalability of the 

proposed anomaly detection system.  
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5.3. SensorScope Dataset 

The SensorScope project of GSB data set is analysed, which  has 23 sensors with several 

meteorological attributes such as temperature, humidity, solar radiation, soil moisture, and so 

on [34]. During the period of 2 months between September 2007 and October 2007, the 23 

sensor nodes sense the readings with a sampling frequency of 2 minutes and are grouped in 

two clusters. Five numbers of nodes are enclosed in one cluster and remaining eighteen 

numbers of nodes are enclosed in another cluster.  

Table 6. Skeleton Structure of GSB Data Set 
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The data in the data set is kept intact at the time of exportation, namely 29-30 September 

2007 during the time interval 06:00 am to 14:00 am. The skeleton structure of the data set is 

illustrated in Table 6. Only three features namely ambient temperature, surface temperature 

and relative humidity are considered. 

5.4. Evaluation on Datasets 

To assess the proposed method, first the data sets are normalized by identifying extreme 

values or specious effects and removing them. Cleaned data were regarded as customary data 

with the use of scatter plot and chi-square test. Anomalies were randomly inserted in one or 

more nodes in each cluster, varying the range of data corruption level from 10% to 70%. 

Proposed system is implemented in the MATLAB version 2013 environment. The accuracy 

of data classification is investigated with respect to identifying anomalous and normal data 

points by calculating the values for sensitivity, specificity and positive projection rate. 

Considering the IBRL dataset, the proposed System is applied to several numbers of clusters 

ranging from 5 to 10. Robust fuzzy c- means algorithm is applied for finding optimal number 

of clusters in the data set. Fig. 9 shows the number of optimal clusters used for evaluating 

anomaly detection technique by using IBRL. Six cases were selected with respect to the 

number of clusters from 5 to 10. By considering the GSB dataset, three cases were selected 

with respect to the number of clusters from 3 to 5. Fig. 10 shows the optimal clusters used 

for evaluating anomaly detection technique in GSB. 

 
a) 5 clusters 

  
b) 6 clusters 

  
c) 7 clusters 
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d) 8 clusters 

  
e) 9 clusters 

 
 f) 10 clusters 

 Fig. 9. Robust Fuzzy C-means Clusters in IBRL 

 

 
a) 3 clusters 

 
b) 4 clusters 

 
c) 5 clusters 

Fig.10. Robust Fuzzy C-means Clusters in GSB 

 

Each cluster readings were experimented by applying spatial, temporal and attribute acts. 

Assurance level of each act can be evaluated for separating inferior, superior and doubtful 

nodes. Fig. 11 depicts the relationship among the attributes involved in the evaluation by 

using IBRL and GSB data sets. Fig. 12.1 and Fig. 12.2 show the membership functions of 

sensor readings in cluster 5 and report low, medium and high assurance level based on the 

correlation act. 

 
 

Fig. 11.Data Distribution with attribute correlation in IBRL (left), Data Distribution with attribute 

correlation in GSB (right) 
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Fig. 12.1 Fuzzy Membership function with attributes in IBRL 

   
Fig. 12.2 Fuzzy Membership function with attributes in GSB 

 

In general, detection accuracy of the proposed system is the ability to diagnose the 

anomalous data correctly. Sensitivity measures the proportion of actual positive cases 

(Anomaly) which are correctly identified as the percentage of incorrect data is correctly 

identified. Specificity measures the proportion of negative cases (Conformity) which are 

correctly identified as the percentage of correct data are correctly identified. FAR measures 

the proportion of positive cases (Anomaly) which are incorrectly identified as the percentage 

of correct data are incorrectly identified. PPR implies probable presence of anomaly in a 

given positive test result. NPR implies the probable absence of anomaly in a given negative 

test result. Table 7 shows the overall performances of proposed anomaly detection system. 

Here the performance of the proposed system is compared with that of approach in [20]. 

Therefore, it is clear that the proposed system achieves significant gain in detecting accuracy 

compared to the existing work [20].  

 

Table 7. Performances of Fuzzy-spatial, Fuzzy-Temporal, Fuzzy-Attribute and existing work 

compared with proposed correlated fuzzy system 

Data 

Set 

Techniques Accuracy Sensitivity Specificity FAR PPR NPR 

IB
R

L
  

D
A

T
A

 S
E

T
 CCFS 99.87 99.74 98.85 2.57 95.87 96.64 

Existing work in [20] 98.33 95.00 99.00 13.57 96.52 92.45 

Fuzzy Temporal 83.40 82.50 87.30 8.52 88.70 79.24 

Fuzzy Attribute 88.11 85.37 89.54 6.54 86.67 77.55 

Fuzzy Spatial 80.30 83.00 81.70 10.95 84.59 82.31 

G
S

B
 D

A
T

A
 

S
E

T
 

CCFS 99.31 98.31 97.83 4.28 96.53 95.61 

Existing work in [20] 97.52 96.45 95.62 7.64 97.49 90.58 

Fuzzy Temporal 87.87 88.50 77.44 10.58 89.11 84.20 

Fuzzy Attribute 91.40 93.90 81.82 7.25 88.51 78.69 

Fuzzy Spatial 86.51 87.09 76.53 8.94 84.28 85.33 
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Fig. 13 and Fig. 14 illustrate the performance of the proposed system for evaluating IBRL 

and GSB dataset. It is observed that the approach in [20] has less sensitivity and high false 

alarm rate compared to CCFS. Specifically, the proposed method considers fuzzy based 

correlation of data, offers 0% false alarm and 100% detection rate till 40% of the nodes in 

the network are found to be anomalous. Even for corruption level above 40% to 70% the 

average false alarm created is simply 2.57% in IBRL and 4.28% in GSB data set respectively. 

 
Fig. 13.  Sensitivity for altering corruption level 

 

Fig. 15 shows the performance of proposed system with varying cluster sizes. For this 

evaluation, different set of test data are randomly generated.  The detection rate and false 

alarm rate are evaluated both for IBRL and GSB dataset. In each case, five clusters in IBRL 

and 3 clusters in GSB are considered and the anomaly is randomly inserted in the clusters. 

As observed from this figure, the proposed system improves the detection rate by taking into 

reflection and combining efficiently several correlation acts with respect to the optimal 

clusters through the use of RFCM. As observed in Fig. 16, anomaly detection and 

misdetection fractions are attractively stable while the numbers of nodes from 50 to 500 are 

increased. This result implies that our fuzzy based anomaly detection has very fastidious 

scalability as it works well under different network sizes without losing its performance. 
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Fig. 14. Sensitivity for altering corruption level 
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Fig. 15. Performance assessment for shifting cluster size 
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Fig. 16. Scalability Comparison 

 

Finally, these performances at various anomalous percentages ranging from 10% to 70% are 

evaluated for 500 nodes. Anomalous percentage is defined as the ratio between total 

numbers of malicious nodes in network to total number of nodes present in the current 

network.  

 

Table 8. Complexity Analysis of Anomaly Detection 

Techniques Computational 

Complexity 

Communication 

Complexity 

Memory Complexity 

CCFS O(ndc+ α+p+q) O(nd) O(ndr) 

Ellipsoidal SVM 

based 
O(nd

2
) O(nvd) O(nvd

2
) 

Approach in [20] 
O(nd

2
) O(nvd

2
) O(nvd

4
) 

Statistical based O(n(n-1)d+pq) O(nd
2
) O(nd

2
+(n-1)d

2
) 

Agglomerative 

clustering based 
O(nd

6
c) O(nd

3
) O(nd

4
) 
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Legends: n - Number new of records at time, d-dimension of the observations, α- Attribute 

correlation,           p-spatial correlation, q- temporal correlation, c - Number of clusters, v- 

intermediate values, r-number of rules 

 

     To further understand the behaviour of the proposed CCFS approach, it is necessary to 

compare it with well established state of the art anomaly detection algorithm. To evaluate the 

efficiency of the CCFS model, the computational complexity, communication overhead and 

memory complexity are considered. The computational complexity incurred by our model is 

O(nd+α+p+q) related to the calculation of spatial, temporal and attribute correlation. The 

communication overhead is O(nd). Correlation act has no communication overhead because 

the analysis was performed locally at each node. The memory complexity is represented as 

O(ndr), where r represents number of rules. Less number of rules saves more memory space. 

Table 8 explains the complexity of different state of the art anomaly detection approaches. 

Albeit our method infers this method proves that the detection rate is high compared to other 

methods. Computational complexity, communicational complexity and memory complexity 

are slightly reduced when compared to other techniques.  

6. Conclusion 

In this paper, a system which employs fuzzy based anomaly detection is developed and it 

uses fuzzy logic to classify anomaly and conformity based on the spatial, temporal and 

attribute correlation acts. Each act is evaluated for various numbers of clusters generated by 

robust fuzzy c-means clustering. After cataloguing of data, superior nodes are labelled as 

customary, inferior nodes as anomaly and doubtful nodes are retested until fixing the final 

decision. The experimental result proves that the proposed CCFS outperforms existing work 

in various aspects like anomaly detection accuracy, false alarm, sensitivity and specificity in 

decision making support.  
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