• Title/Summary/Keyword: Sensor life time

Search Result 379, Processing Time 0.028 seconds

The Wearable Sensor System to Monitor the Head & Neck Posture in Daily Life (웨어러블 센서를 이용한 일상생활중 머리-목 자세 측정 시스템)

  • Lee, Jaehyun;Chee, Youngjoon;Bae, Jieun;Kim, Haseon;Kim, Younghoon
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.112-118
    • /
    • 2016
  • The neck pain is fairly common occurance. Forward head posture and text neck are poor postures which may be related with neck pain but the evidence is not enough. We developed the wearable sensor which can assess the head & neck posture in daily life. Microprocessor, Bluetooth low energy, and 3-axis accelerometer, rechargeable battery and vibratior for reminding are used to implement the wearable sensor. Real-time algorithm to parameterize the posture for one epoch is implemented which classifies the posture in the epoch into three classed; dynamic, static_good posture, and static_poor posture. Also the algorithm makes reminding to its wearer to give them the prolonged poor posture is detected. The mean error of measurement was 1.2 degree. The correlation coefficient between neck angle and craniovertebral angle was 0.9 or higher in all cases. With the pilot study on text neck syndrome was also quatified. Average of neck angle were 74.3 degree during the listening in the classroom and 57.8 degree during the smartphoning. Using the wearable sensor suggested, the poor postures of forward head posture and neck neck can be detected in real-time which can remind the wearer according to his/her setting.

Dynamic Clustering Based on Location in Wireless Sensor Networks with Skew Distribution

  • Kim, Kyung-Jun;Kim, Jung-Gyu
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.27-30
    • /
    • 2005
  • Because of unreplenishable power resources, reducing node energy consumption to extend network lifetime is an important requirement in wireless sensor networks. In addition both path length and path cost are important metrics affecting sensor lifetime. We propose a dynamic clustering scheme based on location in wireless sensor networks. Our scheme can localize the effects of route failures, reduce control traffic overhead, and thus enhance the reachability to the destination. We have evaluated the performance of our clustering scheme through a simulation and analysis. We provide simulation results showing a good performance in terms of approximation ratios.

  • PDF

NDIR Multi-Gas Measurement System for Air Quality based on Wireless Sensor Network (무선센서네트워크 기반 공기질 측정을 위한 비분산적외선 복합가스측정시스템)

  • Paik, Seung Hyun;Lee, Jun Yeong;Jung, Sang Woo;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.299-304
    • /
    • 2016
  • As public interest in air quality and environment problem is increasing, many researches are being carried out the gas measurement system. Especially, Non-dispersive infrared (NDIR) measurements using Beer-Lambert gas sensing principle with very high selectivity and long life time are noted for reliable method. It is possible to detect various gases such as carbon dioxide (CO2), carbon monoxide (CO), and nitrogen dioxide (NO2), but many researches are mostly concentrated on CO2 sensor. The multi-gas measuring instrument is high price and unwieldy, therefore it is not suitable for wide area required numerous instrument. So we study the NDIR multi-gas measurement system for air quality based on wireless sensor network, and experiment the realized measurement system.

The study of Cross Layer Protocol for Energy Consumption In Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율을 고려한 Cross Layer Protocol에 대한 연구)

  • Kim, Hyun-Seo;Jung, Won-Soo;Oh, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.503-504
    • /
    • 2007
  • The most Important thing in Sensor Network Design is a Energy Efficiency. Limited sources of Sensor Mote tan occur merging of Protocol. In this paper, we proposed Cross Layer Protocol for Energy Efficienty. The proposed protocol can increase the network life time using multi hop transmission. sensor network should use multi hop communication and small radius because radio in wireless communication is the most spendable thing in sensor network.

  • PDF

An Efficient Particle Sensor Algorithm (에너지 효율을 고려한 파티클 센서 알고리즘)

  • Hong, Sung-Hwa;Kim, Hoon-Ki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.141-148
    • /
    • 2009
  • Wireless Sensor Networks (WSN) can be applied to various industry fields and environment analysis fields with the progress of various sensor technologies. Also WSN help automatically monitoring of sensor nodes installed at wide area. Especially, the tiny sensor nodes recently developed for the environment analysis require much more electronic power. The reasons are the measurable fields are departmentalized and the more detailed measuring fields are created by the development of various materials and applications. Furthermore, the sensor nodes operated by small batteries for the fields require low cost and low power consumption in wireless networks technology. The power efficiency is the most important factor for the WSN life time. Because the sensor nodes are installed at wide area and hard to recover. This paper proposes the WSN algorithm is applied sensor node that has low power consumption and efficiency measurement.

Lifetime estimation for current sensor by accelerated life test (가속수명시험을 통한 전류센서의 수명 예측)

  • Kim, Je-Min;Choi, Sung-Soon;Ma, Byung-Jin;Lee, Kwan-Hun;Song, Byeong-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.257-258
    • /
    • 2008
  • Hall-type current sensors have been widely used in many fields such as elevator and train system. To estimate lifetime of hall-type current sensors, an accelerated life test with real-time monitoring system simultaneously was designed and performed in high temperature environment with three different temperatures. From the experimental results, activation energy was about 0.9 eV, and acceleration factor was about 450 based on Arrhenius model. As a results, $B_{10}$ lifetime of hall-type current sensor is estimated to be 65,460 hours.

  • PDF

Multi-path Routing Protocol with Optimum Routes Finding Scheme in Wireless Sensor Networks

  • Keuma, Tae-Hoon;Bu, Ki-Dong;Kim, Hyun-Sung;Lee, Sung-Woon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.449-454
    • /
    • 2008
  • Finding an energy efficient route is one of the very important issues in the wireless sensor networks. The route scheme should consider both of the energy level of sensor nodes and the number of hops at the same time. First of all, this paper proposes an optimum routes finding scheme (ORFS), which could be used in the sensor network routing protocols. The scheme uses an optimum value for the path with the considerations of both the minimum energy level of a path and the number of hops at the same time. After that, this paper proposes a routing protocol based on the ORFS for how it could be used for the multipath directed diffusion with data aggregation (MDD-A), to get the better energy efficiency. The analysis result shows that the proposed routing protocol could lengthen the network life cycle about 18.7% compared to the previous MDD-A related protocols.

  • PDF

Development of Real time Aircraft harmful gas detecting Emebedded system through wireless sensor network (무선 센서 네트워크를 통한 실시간 항공기 유해가스 감지 임베디드 시스템 개발)

  • Choi, Won-Huyck;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.672-678
    • /
    • 2013
  • In this paper, with the development of Information technology, application service between IT and traditional industry has been on the rise. And there are many on-going discussions actively regarding the Air quality system based on wireless sensor network which monitor and control the aircraft environment automatically and manually with the application service of detecting harmful gas. In this paper, operation program constitute the administrator monitoring device, which collects data from sensor node of wireless sensor network and sensor node and transmits environment information to display and server. Also for remote monitoring, user operation program constitutes based on PC/smartphone. Under this, the harmful gas which is made in aircraft life is measured. Real time monitoring system based on wireless sensor network is designed and realized.

Development of Mixed Sensor Parts for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 혼합형 센서부 개발)

  • Kim, Jae-Hyeong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1457-1460
    • /
    • 2019
  • In this paper, we proposed the development of a mixed sensor parts for integrated radiation exposure protection fireman's life-saving alarm that can be location-tracked and irradiated. To measure radiation exposure dose, we use the PIN-Diode radiation measurement sensor module, a semi-conductive radiation measurement sensor that can minimize size and weight. The design for removing leakage current is carried out to enhance the characteristics of the radiation measurement sensor using PIN-Diode. The IMU sensor module is used to estimate the location of the current fireman at the same time as the accident estimate by adding together the data and the values for acceleration on the three axis. Experiments were conductied by an authorized testing agency to determine the efficiency of the proposed mixed sensor parts for integrated radiation exposure protection fireman's life-saving alarms. The cumulative dose measurement range was measured in the range of 10 μSv to 10 mSv, the highest level in the world. The accuracy was measured from ±6.3% to ±9.0% (137 Cs) and normal operation was found at the international standard of ±15%. In addition, positional accuracy was measured within ±10%, resulting in a high level of results, demonstrating its effectiveness. Therefore, it is expected that more firemen will be able to provide with superior performance integrated radiation exposure protection fireman life-saving alarm.

WSN Lifetime Analysis: Intelligent UAV and Arc Selection Algorithm for Energy Conservation in Isolated Wireless Sensor Networks

  • Perumal, P.Shunmuga;Uthariaraj, V.Rhymend;Christo, V.R.Elgin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.901-920
    • /
    • 2015
  • Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.