• Title/Summary/Keyword: Sensor flow

Search Result 878, Processing Time 0.031 seconds

Development of a Signal Control Algorithm Using an Individual Vehicle's Data in a Wireless Environment (무선통신 환경에서의 개별차량 정보를 이용한 교차로 신호제어 알고리즘 개발)

  • Lee, In-Gyu;Kim, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.125-134
    • /
    • 2009
  • Recently, as IT technology and the ubiquitous environment have diffused, the application of these techniques are being attempted in the field of traffic operations and management. Therefore, it is necessary to develop data collection systems and signal control strategies that are suitable in the ubiquitous environment and that will improve efficiency and safety of signalized intersections. The authors conducted a study on the Wireless Sensor Network (WSN) signal control strategy using a wireless communication network between individual vehicles and a signal-control system and full actuated signal control technique to propose a new signal control strategy in the ubiquitous environment. The WSN was defined to evaluate the algorithm used with PARAMICS API simulation. The simulation produced results that the WSN signal control is more effective than other signal control methods. The WSN signal control could reduce vehicle delay time to a maximum of 64% in comparison with other signal control methods in low and near saturation flow conditions.

The Road Speed Sign Board Recognition, Steering Angle and Speed Control Methodology based on Double Vision Sensors and Deep Learning (2개의 비전 센서 및 딥 러닝을 이용한 도로 속도 표지판 인식, 자동차 조향 및 속도제어 방법론)

  • Kim, In-Sung;Seo, Jin-Woo;Ha, Dae-Wan;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, a steering control and speed control algorithm was presented for autonomous driving based on two vision sensors and road speed sign board. A car speed control algorithm was developed to recognize the speed sign by using TensorFlow, a deep learning program provided by Google to the road speed sign image provided from vision sensor B, and then let the car follows the recognized speed. At the same time, a steering angle control algorithm that detects lanes by analyzing road images transmitted from vision sensor A in real time, calculates steering angles, controls the front axle through PWM control, and allows the vehicle to track the lane. To verify the effectiveness of the proposed algorithm's steering and speed control algorithms, a car's prototype based on the Python language, Raspberry Pi and OpenCV was made. In addition, accuracy could be confirmed by verifying various scenarios related to steering and speed control on the test produced track.

Non-invasive Blood Glucose Detection Sensor System Based on Near-Infrared Spectroscopy (근적외선 분광법 기반 비침습식 혈당 검출 센서 시스템)

  • Kang, Young-Man;Han, Soon-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.991-1000
    • /
    • 2021
  • Among non-invasive blood glucose detection technologies, the optical technique is a method that uses light reflection, absorption, and scattering characteristics when passing through a biological medium. It reduces pain or discomfort in measurement and has no risk of infection. So it is becoming a major flow of blood glucose detection research. Among them, near-infrared spectroscopy has a disadvantage in that the complexity increases when analyzing signals detected due to interferences between proteins and acids that share a similar absorption function with blood glucose molecules. In this study, a non-invasive sensor system with multiple near-infrared bands was designed and manufactured to alleviate the deterioration of blood glucose detection function that may occur due to skin absorption of near-infrared rays. A blood survey was conducted to verify the system, and the degree of blood glucose response in the blood was collected as spectral data, and the results of this study were quantitatively verified in terms of correlation between the data and blood glucose.

A Study on Indoor Air-quality Improvement System Using Actuator (선형엑츄에이터를 이용한 실내 공기질 개선 시스템에 대한 연구)

  • Seo, Do-Won;Yoon, Keun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.183-190
    • /
    • 2021
  • This study is a study on the implementation and operation of smart air cleaning system to improve indoor air quality. Recently, the problem of indoor air quality is getting serious due to various environmental factors. In this study, to improve the problems of indoor air quality, we implement an air cleaning system using IoT sensor. In particular, we proposed a system that can measure air pollution in real time and change different air flow paths according to pollution level. Through this, we examined efficient air quality improvement, extension of filter life, and system energy reduction. In addition, the main functions of the indoor air quality improvement system were constructed and prototypes were manufactured to confirm the operability. Finally, the utility of fine dust resolution through the implementation of the indoor air quality improvement system was examined.

Performance Evaluation of Measuring Instrument for Infra-Red Signature Suppression System Model Test (적외선 신호저감 장치 모형시험을 위한 계측기의 성능평가)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.21-27
    • /
    • 2023
  • Modern naval ships install an Infra-Red Signature Suppression system (IRSS) in their exhaust pipe to reduce infrared signature emitted to the outside. In addition, naval ships are strategic assets with a very long life cycle, so high reliability of the performance of the equipment on board must be guaranteed. Therefore, equipment such as IRSS is evaluated for performance through model testing at the design stage. A variety of measuring instruments are used in IRSS model testing, and the reliability of these instruments must also be guaranteed. In this paper, a study was conducted to evaluate the reliability of measurement equipment used in IRSS model testing. The test equipment and instruments used were a hot gas wind tunnel, pitot tube, digital differential pressure gauge, thermocouple sensor, and digital recorder. As the fan speed of the hot gas wind tunnel increased, the measurement deviation of the flow decreased, and the temperature output of the thermocouple sensor showed differences in response time and stability depending on the method used.

A Study on the Detection Characteristics in Glucose and Fabrication of Bi-Enzyme Electrode using Electrochemical Method (전기화학적 방법을 이용한 다중 효소 전극 제작 및 글루코스 검출 특성에 관한 연구)

  • Han, Kyoung Ho;Shin, In Seong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.66-72
    • /
    • 2020
  • In this study, the development of biosensors capable of bi-enzyme reactions by including Horseradish peroxidase and glucose oxidase was carried out for detection of glucose. The sensors were manufactured using electro deposition method to reduce production time, and screen printed electrodes (SPE) were used to produce economical sensors. To check the bienzyme effect, the sensor was compared and analyzed with single enzyme biosensor. The characteristics of the sensor were evaluated using scanning electron microscopy(SEM), cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), chronoamperometry(CA), and flow injection analysis(FIA). Analysis results from SEM, CV and EIS confirmed that the enzymes are well fixed to the electrode surface. In addition, it was confirmed that bi-enzyme biosensors manufactured from the CA method improved signal performance by 200% compared to single enzyme biosensors. From this results, we were able to explain that HRP and GOD react catalyzed to each other. And the results of FIA showed that the intensity of each current signal was constant when the same concentration of glucose was injected four times. In addition, by analyzing the intensity of current signals for glucose concentrations, the biosensors manufactured in this study showed excellent trends in signal sensitivity, reproducibility and stability.

Preparation of Zinc Oxide Thin Film by CFR Method and its Electrical Property for Detection of Sulfur Compounds (CFR 법에 의한 산화아연 박막의 제조 및 황 화합물 검출을 위한 전기적 특성)

  • Lee, Sun Yi;Park, No-Kuk;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.218-223
    • /
    • 2010
  • The zinc oxide thin film, which can be applied as the gas sensor of a semiconductor type, was grown on the silicon substrate by CFR(continuous flow reaction) method in this study. The growth property and the electrical property of the zinc oxide thin films synthesized by CFR method were also investigated. Zinc acetate solutions of 0.005~0.02 M were used as the precursor for the preparation of zinc oxide thin films. The size of ZnO particles consisted on the zinc oxide thin film increased not only with increasing concentration of precursor, but also the thickness of thin film increased. The growth rate of zinc oxide thin film by CFR method was proportionably depend on the concentration of precursor and the uniform ZnO thin film was prepared when zinc acetate of 0.01 M is used as the precursor. The charged currents on the zinc oxide thin films were obtained as its electrical property by I-V meter, and increased agree with increasing the thickness of zinc oxide thin film. Thus, it was concluded that the charged current on the zinc oxide thin film can be controlled with changing concentration of precursor solution in CFR method. The charged currents on the zinc oxide thin films also decreased when ZnO thin film is exposed under hydrogen sulfide of 500 ppmv at $300^{\circ}C$ for 5 min. From these results, it could be confirmed that the zinc oxide thin film prepared by CFR method can be used for the detection of sulfur compounds.

Evaluation of Field Application and Estimation of Bedload Discharge in the Forest Watershed using the Hydrophone (하이드로폰을 이용한 산림유역 소류사 유출량 산정 및 현장 적용성 검토)

  • Seo, Jun-Pyo;Kim, Ki-Dae;Woo, Choong-Shik;Lee, Chang-Woo;Lee, Heon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.807-818
    • /
    • 2020
  • In this study, hydrophones using acoustic sensors were used to estimate the amount of bedload discharge in a forested watershed. The reaction characteristics were analyzed through hydrophone flume tests and field tests, and the quantitative bedload discharge was calculated and compared with that measured by a pit sampler. The hydrophone reaction changed the pulse according to the flow rate change, but did not react to standard sand. The pulse was different depending on the particle size and weight, and accordingly, there was a specific channel showing a suitable response. For a hydrophone installed in the field, by using an automatic impact device, the reaction characteristics of each channel were analyzed to confirm normal operation of the sensor and the suitability of the output value of each channel. In addition, a suitable channel was selected for the estimation of bedload discharge. The bedload discharge formula was developed using a hydrophone pulse and the average flow rate, and was compared with the measured data in the pit sampler in the study site. As a result of the study, if a hydrophone is used for monitoring the bedload in forested watersheds, it is considered effective in quantitatively estimating the weight of bedload discharge.

Design and Verification of Ceramic Heating Element-based Tankless Instant Electric Water Heater (세라믹 발열체기반 비저장식 순간 전기 온수기 개발 및 검증)

  • Ahn, Sung-Su;Kim, Woo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.151-159
    • /
    • 2016
  • This paper proposes a ceramic heating element-based tankless instant electric water heater for hand/face washing that does not require a lot of hot water. The heating module, which heats the input water and outputs hot water, operates the ceramic heating element detecting input water using a flow sensor. Inside of the heating module is designed to form one flow path in order to get almost $15^{\circ}C$ increased heated water compared to the input water temperature within 2 second after 1.5 liter per minute water supply. The design validity is verified using a heat flow analysis of the water flow and temperature variations inside of the heating module also. Based on the design data, the heating module is constructed including a single rod-type ceramic heating element. After that, a prototype system having temperature setting function by three steps were constructed. The prototype system is connected to a 1.5 liter per minute water supply line, and the water output temperature and time measurement experiments confirmed that the proposed system output the heated water increased by $18.3^{\circ}C$ in case of third step setting within 2 second after water supply. And standby power is under 1 W and peak power does not exceed the permissible range for the general house usage. Several performance results verify that the proposed tankless instant electric water heater is applicable for the washstand of the house, highway rest area and factory so on as winter-time hand/face washing.

Analysis of Photoplethysmographic Waveform for Assessment of Pulpal Blood Flow in Children (소아 환자의 치수 혈류 평가를 위한 광용적맥파 파형 분석)

  • Kim, Hyo-Eun;Shin, Teo Jeon;Kong, Hyoun-Joong;Kim, Pil-Jong;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg;Kim, Chong-Chul;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.2
    • /
    • pp.158-165
    • /
    • 2016
  • The purpose of this study was to analyze photoplethysmographic waveforms from pulse oximeter using raw data of red and infrared light and investigate the reference values of parameters (Height, Width50, Maximum slope, Minimum slope, Area) for evaluating pulpal blood flow in maxillary central incisors with normal pulp vitality in children. The study was performed in 30 pediatric patients, aged 7-16 years old, using pulse oximeter (MEKICS Co., Ltd, Korea) combined with a custom-made sensor. The raw data was obtained and recorded by custom-made software and analyzed by LabChart (v.7.3, ADInstruments, Germany) offline. In this study, we analyzed photoplethysmographic waveforms from pulse oximeter applied to maxillary central incisor for assessment of pulpal blood flow and suggested several reference values of young permanent maxillary central incisor with normal pulp. On average, the waveform of red light was higher, stiffer and wider than that of infrared light. Future studies about reference values for other normal teeth and the teeth with impaired pulp vitality are needed.