• Title/Summary/Keyword: Sensor based

Search Result 10,190, Processing Time 0.041 seconds

Land Cover Classification of Coastal Area by SAM from Airborne Hyperspectral Images (항공 초분광 영상으로부터 연안지역의 SAM 토지피복분류)

  • LEE, Jin-Duk;BANG, Kon-Joon;KIM, Hyun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • Image data collected by an airborne hyperspectral camera system have a great usability in coastal line mapping, detection of facilities composed of specific materials, detailed land use analysis, change monitoring and so forh in a complex coastal area because the system provides almost complete spectral and spatial information for each image pixel of tens to hundreds of spectral bands. A few approaches after classifying by a few approaches based on SAM(Spectral Angle Mapper) supervised classification were applied for extracting optimal land cover information from hyperspectral images acquired by CASI-1500 airborne hyperspectral camera on the object of a coastal area which includes both land and sea water areas. We applied three different approaches, that is to say firstly the classification approach of combined land and sea areas, secondly the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas, and thirdly the land area-only classification approach using atmospheric correction images and compared classification results and accuracies. Land cover classification was conducted respectively by selecting not only four band images with the same wavelength range as IKONOS, QuickBird, KOMPSAT and GeoEye satelllite images but also eight band images with the same wavelength range as WorldView-2 from 48 band hyperspectral images and then compared with the classification result conducted with all of 48 band images. As a result, the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas is more effective than classification approach of combined land and sea areas. It is showed the bigger the number of bands, the higher accuracy and reliability in the reclassification approach referred above. The results of higher spectral resolution showed asphalt or concrete roads was able to be classified more accurately.

A Study on Intuitive IoT Interface System using 3D Depth Camera (3D 깊이 카메라를 활용한 직관적인 사물인터넷 인터페이스 시스템에 관한 연구)

  • Park, Jongsub;Hong, June Seok;Kim, Wooju
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.137-152
    • /
    • 2017
  • The decline in the price of IT devices and the development of the Internet have created a new field called Internet of Things (IoT). IoT, which creates new services by connecting all the objects that are in everyday life to the Internet, is pioneering new forms of business that have not been seen before in combination with Big Data. The prospect of IoT can be said to be unlimited in its utilization. In addition, studies of standardization organizations for smooth connection of these IoT devices are also active. However, there is a part of this study that we overlook. In order to control IoT equipment or acquire information, it is necessary to separately develop interworking issues (IP address, Wi-Fi, Bluetooth, NFC, etc.) and related application software or apps. In order to solve these problems, existing research methods have been conducted on augmented reality using GPS or markers. However, there is a disadvantage in that a separate marker is required and the marker is recognized only in the vicinity. In addition, in the case of a study using a GPS address using a 2D-based camera, it was difficult to implement an active interface because the distance to the target device could not be recognized. In this study, we use 3D Depth recognition camera to be installed on smartphone and calculate the space coordinates automatically by linking the distance measurement and the sensor information of the mobile phone without a separate marker. Coordination inquiry finds equipment of IoT and enables information acquisition and control of corresponding IoT equipment. Therefore, from the user's point of view, it is possible to reduce the burden on the problem of interworking of the IoT equipment and the installation of the app. Furthermore, if this technology is used in the field of public services and smart glasses, it will reduce duplication of investment in software development and increase in public services.

A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION WITH POLARBEAR

  • ADE, P.A.R.;AKIBA, Y.;ANTHONY, A.E.;ARNOLD, K.;ATLAS, M.;BARRON, D.;BOETTGER, D.;BORRILL, J.;CHAPMAN, S.;CHINONE, Y.;DOBBS, M.;ELLEFLOT, T.;ERRARD, J.;FABBIAN, G.;FENG, C.;FLANIGAN, D.;GILBERT, A.;GRAINGER, W.;HALVERSON, N.W.;HASEGAWA, M.;HATTORI, K.;HAZUMI, M.;HOLZAPFEL, W.L.;HORI, Y.;HOWARD, J.;HYLAND, P.;INOUE, Y.;JAEHNIG, G.C.;JAFFE, A.H.;KEATING, B.;KERMISH, Z.;KESKITALO, R.;KISNER, T.;JEUNE, M. LE;LEE, A.T.;LEITCH, E.M.;LINDER, E.;LUNGU, M.;MATSUDA, F.;MATSUMURA, T.;MENG, X.;MILLER, N.J.;MORII, H.;MOYERMAN, S.;MYERS, M.J.;NAVAROLI, M.;NISHINO, H.;ORLANDO, A.;PAAR, H.;PELOTON, J.;POLETTI, D.;QUEALY, E.;REBEIZ, G.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.625-628
    • /
    • 2015
  • POLARBEAR is a ground-based experiment located in the Atacama desert of northern Chile. The experiment is designed to measure the Cosmic Microwave Background B-mode polarization at several arcminute resolution. The CMB B-mode polarization on degree angular scales is a unique signature of primordial gravitational waves from cosmic inflation and B-mode signal on sub-degree scales is induced by the gravitational lensing from large-scale structure. Science observations began in early 2012 with an array of 1.274 polarization sensitive antenna-couple Transition Edge Sensor (TES) bolometers at 150 GHz. We published the first CMB-only measurement of the B-mode polarization on sub-degree scales induced by gravitational lensing in December 2013 followed by the first measurement of the B-mode power spectrum on those scales in March 2014. In this proceedings, we review the physics of CMB B-modes and then describe the Polarbear experiment, observations, and recent results.

A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System (NCW 환경에서 C4I 체계 전투력 상승효과 평가 알고리즘 : 기술 및 인적 요소 고려)

  • Jung, Whan-Sik;Park, Gun-Woo;Lee, Jae-Yeong;Lee, Sang-Hoon
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.55-72
    • /
    • 2010
  • Recently, the battlefield environment has changed from platform-centric warfare(PCW) which focuses on maneuvering forces into network-centric warfare(NCW) which is based on the connectivity of each asset through the warfare information system as information technology increases. In particular, C4I(Command, Control, Communication, Computer and Intelligence) system can be an important factor in achieving NCW. It is generally used to provide direction across distributed forces and status feedback from thoseforces. It can provide the important information, more quickly and in the correct format to the friendly units. And it can achieve the information superiority through SA(Situational Awareness). Most of the advanced countries have been developed and already applied these systems in military operations. Therefore, ROK forces also have been developing C4I systems such as KJCCS(Korea Joint Command Control System). And, ours are increasing the budgets in the establishment of warfare information systems. However, it is difficult to evaluate the C4I effectiveness properly by deficiency of methods. We need to develop a new combat effectiveness evaluation method that is suitable for NCW. Existing evaluation methods lay disproportionate emphasis on technical factors with leaving something to be desired in human factors. Therefore, it is necessary to consider technical and human factors to evaluate combat effectiveness. In this study, we proposed a new Combat Effectiveness evaluation algorithm called E-TechMan(A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System). This algorithm uses the rule of Newton's second law($F=(m{\Delta}{\upsilon})/{\Delta}t{\Rightarrow}\frac{V{\upsilon}I}{T}{\times}C$). Five factors considered in combat effectiveness evaluation are network power(M), movement velocity(v), information accuracy(I), command and control time(T) and collaboration level(C). Previous researches did not consider the value of the node and arc in evaluating the network power after the C4I system has been established. In addition, collaboration level which could be a major factor in combat effectiveness was not considered. E-TechMan algorithm is applied to JFOS-K(Joint Fire Operating System-Korea) system that can connect KJCCS of Korea armed forces with JADOCS(Joint Automated Deep Operations Coordination System) of U.S. armed forces and achieve sensor to shooter system in real time in JCS(Joint Chiefs of Staff) level. We compared the result of evaluation of Combat Effectiveness by E-TechMan with those by other algorithms(e.g., C2 Theory, Newton's second Law). We can evaluate combat effectiveness more effectively and substantially by E-TechMan algorithm. This study is meaningful because we improved the description level of reality in calculation of combat effectiveness in C4I system. Part 2 will describe the changes of war paradigm and the previous combat effectiveness evaluation methods such as C2 theory while Part 3 will explain E-TechMan algorithm specifically. Part 4 will present the application to JFOS-K and analyze the result with other algorithms. Part 5 is the conclusions provided in the final part.

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.

Development of 3D Viewer for Tree Cavity using Pulse Ultrasound (펄스 초음파를 이용한 수목 공동부 3D 구현 프로그램 제작)

  • Son, Jungmin;Kang, Sunghoon;Moon, Jongwook;Yoon, Seokkyu;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.265-271
    • /
    • 2021
  • The pattern of the tree's internal swelling depends on many causes. Since it is difficult to detect these various causes of swelling with a general method, if the state of swelling for a long time cannot be confirmed, serious damage to the trees may occur due to enlargement of the swelling area. In the method of acquiring a tree tomography image, an impulse passing through the tree is generated by tapping the sensor with a rubber mallet, and the moving speed is recorded. In this paper, to measure cracks, cavities, and swelling due to physical damage, we developed a 3D viewer that can know the internal state of a tree using a tree cross-section image acquired from Arbotom to determine the degree of swelling inside the tree. Based on this, we tried to present data that can be referred to when surgical operation of trees is required. In order to acquire a tomographic image of a tree, 6 sensors were attached to the three Yangpala and Maple trees, and a 1 m-long tree was measured using the Arbotom program, and a 3D image was implemented through the 3D Viewer created using MATLAB. In addition to simply acquiring images, the cross-sectional length and volume of the tree were measured. In the actually produced 3D Viewer, the length of the part where the swelling of the maple tree occurred was 33.12 cm, and the swelling of the yangpala tree was measured as 21.41 cm. The volume of the maple tree was measured to be 78.832 ㎤. As a result of comparing the cross-sectional image of the Arbotom and the 3D image, the same result as the real aspect of the tree was obtained, so it can be judged that the reliability of the manufactured software is also secured, and data to be applied to the surgical tree operation through the created Viewer is provided. It is believed that the damage will be minimized.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

The Washing Effect of Precipitation on PM10 in the Atmosphere and Rainwater Quality Based on Rainfall Intensity (강우 강도에 따른 대기 중 미세먼지 저감효과와 강우수질 특성 연구)

  • Park, Hyemin;Byun, Myounghwa;Kim, Taeyong;Kim, Jae-Jin;Ryu, Jong-Sik;Yang, Minjune;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1669-1679
    • /
    • 2020
  • This study examines the washing effect of precipitation on particulate matter (PM) and the rainwater quality (pH, electrical conductivity (EC), water-soluble ions concentration). Of six rain events in total, rainwater samples were continuously collected every 50 mL from the beginning of the precipitation using rainwater collecting devices at Pukyong National University, Busan, South Korea, from March 2020 to July 2020. The collected rainwater samples were analyzed for pH, EC, and water-soluble ions (cations: Na+, Mg2+, K+, Ca2+, NH4+, and anions: Cl-, NO3-, SO42-). The concentrations of particulate matter were continuously measured during precipitation events with a custom-built PM sensor node. For initial rainwater samples, the average pH and EC were approximately 4.3 and 81.9 μS/cm, and the major ionic components consisted of NO3- (5.4 mg/L), Ca2+ (4.2 mg/L), Cl- (4.1 mg/L). In all rainfall events, rainwater pH gradually increased with rainfall duration, whereas EC gradually decreased due to the washing effect. When the rainfall intensities were relatively weak (<5 mm/h), PM10 reduction efficiencies were less than 40%. When the rainfall intensities were enhanced to more than 7.5 mm/h, the reduction efficiencies reached more than 60%. For heavy rainfall events, the acidity and EC, as well as ions concentrations of initial rainwater samples, were higher than those in later samples. This appears to be related to the washing effect of precipitation on PM10 in the atmosphere.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Extraction of Water Body Area using Micro Satellite SAR: A Case Study of the Daecheng Dam of South korea (초소형 SAR 위성을 활용한 수체면적 추출: 대청댐 유역 대상)

  • PARK, Jongsoo;KANG, Ki-Mook;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • It is very essential to estimate the water body area using remote exploration for water resource management, analysis and prediction of water disaster damage. Hydrophysical detection using satellites has been mainly performed on large satellites equipped with optical and SAR sensors. However, due to the long repeat cycle, there is a limitation that timely utilization is impossible in the event of a disaster/disaster. With the recent active development of Micro satellites, it has served as an opportunity to overcome the limitations of time resolution centered on existing large satellites. The Micro satellites currently in active operation are ICEYE in Finland and Capella satellites in the United States, and are operated in the form of clusters for earth observation purposes. Due to clustering operation, it has a short revisit cycle and high resolution and has the advantage of being able to observe regardless of weather or day and night with the SAR sensor mounted. In this study, the operation status and characteristics of micro satellites were described, and the water area estimation technology optimized for micro SAR satellite images was applied to the Daecheong Dam basin on the Korean Peninsula. In addition, accuracy verification was performed based on the reference value of the water generated from the optical satellite Sentinel-2 satellite as a reference. In the case of the Capella satellite, the smallest difference in area was shown, and it was confirmed that all three images showed high correlation. Through the results of this study, it was confirmed that despite the low NESZ of Micro satellites, it is possible to estimate the water area, and it is believed that the limitations of water resource/water disaster monitoring using existing large SAR satellites can be overcome.