• Title/Summary/Keyword: Sensor Sensitivity

Search Result 1,892, Processing Time 0.027 seconds

Sensitivity Analysis of Fiber Optic Hydrophone for Hollow Cylindrical Mandrel (중공 원통형 광섬유 하이드로폰의 감도 해석)

  • 김정석;윤형규;설재수;남성현
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.565-569
    • /
    • 1999
  • Recently, fiber optic hydrophone is a subject which has attracted as a underwater acoustic sensor. In this study, Finite element modeling of fiber optic hydrophone for hollow cylindrical mandrel was performed and the acoustic sensitivity was calculated to estimate the performance of single element fiber optic hydrophone. And acoustic sensitivity was measured in acoustic water tank to verify the result of simulation. The result of FE analysis and experiment is -126 dB re rad/$\mu$ Pa and -128 dB re rad/$\mu$ Pa respectively.

  • PDF

Photocurrent Characteristics of Gate/Body-Tied MOSFET-Type Photodetector with High Sensitivity

  • Jang, Juneyoung;Choi, Pyung;Lyu, Hong-Kun;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • In this paper, the photocurrent characteristics of gate/body-tied (GBT) metal-oxide semiconductor field-effect transistor (MOSFET)-type photodetector with high sensitivity in the 408 nm - 941 nm range are presented. High sensitivity is important for photodetectors, which are used in several scientific and industrial applications. Owing to its inherent amplifying characteristics, the GBT MOSFET-type photodetector exhibits high sensitivity. The presented GBT MOSFET-type photodetector was designed and fabricated via a standard 0.18 ㎛ complementary metal-oxide-semiconductor (CMOS) process, and its characteristics were analyzed. The photodetector was analyzed with respect to its width to length (W/L) ratio, bias voltage, and incident-light wavelength. It was confirmed experimentally that the presented GBT MOSFET-type photodetector has over 100 times higher sensitivity than a PN-junction photodiode with the same area in the 408 nm - 941 nm range.

Fiber Bragg grating sensor using polarization-maintaining fiber (편광 유지 광섬유를 이용한 Bragg Grating 센서 제작)

  • 김철진;박태상;이상배;최상삼;정해양
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.415-419
    • /
    • 1997
  • A novel fiber optic sensor is demonstrated using a FBG in PM(Polarization-Maintaining) fiber. Gratings have been written in a Bow-Tie type fiber using the phase mask. The operation of the sensor simply involves monitoring back-reflected Bragg wavelengths from the grating. Since PM fiber has two principal semi-axes with two indices of refraction, two Bragg wavelengths were observed. We have observed the position of Bragg wavelengths for PM FBG shifted simultaneously by either applying the longitudinal strain or temperature change. The wavelength sensitivity of 1.2pm/$\mu$$\varepsilon$ about a longitudinal strain and the wavelength sensitivity of 11.4pm/$^{\circ}C$ about a temperature have been experimentally achieved. The wavelength sensitivity of both longitudinal strain and temperature are approximately same with the reported values for the single mode FBG. On the other hand, the change of separation between Bragg wavelengths was observed by the applying transverse stress. We observed that the separation between two Bragg wavelengths is proportional to the applied transverse stress. The wavelength sensitivity of 14.6 pm/N about a transverse stress has been achieved. We have demonstrated PM FBG sensors can measure the transverse stress independently from the effects of temperature.

  • PDF

The Fabrication of ITO Thin-film O3 Gas Sensors Using R.F. Magnetron Sputtering Method and their Characterization (R.F. Magnetron Sputtering법을 이용한 ITO 박막 오존 가스센서의 제조 및 특성)

  • Kwon, Jung-Bum;Jung, Kyoung-Keun;Lee, Dong-Su;Ha, Jo-Woong;Yoo, Kwang-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.840-845
    • /
    • 2002
  • As an ozone gas sensor, the semiconductor gas sensor which is cheap, portable and simple in use and has a high sensitivity and an excellent selectivity, has been known as an alternative. In the present study, ITO ($In_2O_3 95%,\;SnO_2$ 5%) thin films were deposited on the alumina substrate by using R.F. magnetron sputtering method. The substrate temperature was 300$^{\circ}C$ and 500$^{\circ}C$, respectively and then some specimens were annealed at 500$^{\circ}C$ for 4h in air. ITO gas-sensing films formed crystallines before and after annealing. As results of gas sensitivity measurements to an ozone gas, the sensor deposited at 300$^{\circ}C$ and then annealed has the highest sensitivity (sensible below 1 ppm). As the operating temperature increased gradually, the sensitivity decreased but the response time and stability improved.

Development of High-Sensitivity Detection Sensor and Module for Spatial Distribution Measurement of Multi Gamma Sources (다종 감마선 공간분포 측정을 위한 고감도 검출센서 및 탐지모듈 개발)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.705-707
    • /
    • 2017
  • Stereo-based spatial radiation detection devices can obtain not only spatial distribution information about the radiation source but also distance information from the detection device to the source. And it provides more efficient information on the source than the existing radiation imaging device. In order to provide high-speed information on the spectrum and type of gamma-ray source, a high-sensitivity detection sensor with high sensitivity is required, and a technique capable of solving the saturation phenomenon at a high dose is needed. In this paper, we constructed a high sensitivity sensor for the measurement of multiple gamma - ray spatial distributions using improved function of detection module to solve saturation to high dose and conducted research to increase the scope of a single detector. The result of this paper improves the performance of gamma ray.

  • PDF

Specification optimization and sensitivity analysis of Si3N4/SiO2 slot and ridge-slot optical waveguides for integrated-optical biochemical sensors (집적광학 바이오케미컬 센서에 적합한 Si3N4/SiO2 슬롯 및 릿지-슬롯 광 도파로 제원 최적화 및 감지도 해석)

  • Jang, Jaesik;Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.139-147
    • /
    • 2021
  • Numerical analysis was performed using FIMMWAVE to optimize the specifications of Si3N4/SiO2 slot and ridge-slot optical waveguides based on confinement factor and effective mode area. The optimized specifications were confirmed based on sensitivity in terms of the refractive index of the analyte. The specifications of the slot optical waveguide, i.e., the width of the slot and the width and height of the rails, were optimized to 0.2 ㎛, 0.46 ㎛, and 0.5 ㎛ respectively. When the wavelength was 1.55 ㎛ and the refractive index of the slot was 1.3, the confinement factor and effective mode area of 0.2024 and 2.04 ㎛2, respectively, were obtained based on the optimized specifications. The thickness of the ridge and the refractive index of the slot were set to 0.04 ㎛ and 1.1, respectively, to optimize the ridge-slot optical waveguide, and the confinement factor and effective mode area were calculated as 0.1393 and 2.90 ㎛2, respectively. When the confinement coefficient and detection degree of the two structures were compared in the range of 1 to 1.3 of the analyte index, it was observed that the confinement coefficient and sensitivity were higher in the ridge-slot optical waveguide in the region with a refractive index less than 1.133, but the reverse situation occurred in the other region. Therefore, in the implementation of the integrated optical biochemical sensor, it is possible to propose a selection criterion for the two parameters depending on the value of the refractive index of the analyte.

Sensing characteristics of a non-dispersive infrared CO2 sensor using a Fabry-Perot filter based on distributed Bragg reflector (분산 반사경 기반 패브리-페로 필터를 이용한 비분산적외선 CO2 센서의 감지 특성)

  • Do, Nam Gon;Lee, Junyeop;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.446-450
    • /
    • 2021
  • Non-dispersive infrared (NDIR) gas sensors typically use an optical filter that transmits a discriminating 4.26 ㎛ wavelength band to measure carbon dioxide (CO2), as CO2 absorbs 4.26 ㎛ infrared. The filter performance depends on the transmittance and full width at half maximum (FWHM). This paper presents the fabrication, sensitivity, and selectivity characteristics of a distributed Bragg reflector (DBR)-based Fabry-Perot filter with a simple structure for CO2 detection. Each Ge and SiO2 films were prepared using the RF magnetron sputtering technique. The transmittance characteristics were measured using Fourier-transform infrared spectroscopy (FT-IR). The fabricated filter had a peak transmittance of 59.1% at 4.26 ㎛ and a FWHM of 158 nm. In addition, sensitivity and selectivity experiments were conducted by mounting the sapphire substrate and the fabricated filter on an NDIR CO2 sensor measurement system. When measuring the sensitivity, the concentration of CO2 was observed in the range of 0-10000 ppm, and the selectivity was measured for environmental gases of 1000 ppm. The fabricated filter showed lower sensitivity to CO2 but showed higher selectivity with other gases.

Fabrication of Relative-type Capacitive Pressure Sensor (상대압 용량성 압력센서의 제작)

  • 서희돈;임근배;최세곤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.82-88
    • /
    • 1993
  • This paper describes fabrication of relative type capacitive pressure sensor to be in great demand for many fields. The fabricated sensor consists of two parts` a sensing diaphragm and a pyrox glass cover. The sensor size is 4.5${\times}3.4mm$^{2})$ and 400$\mu$m thick. To improve the nonlinearity, this sensor is designed a rectangular silicon diaphragm with a center boss structure, and in order to improve the temperature characteristics of the sensor in a packaging process, the sensing element is mounted on the pyrex glass support. Some suggestions toward the design and fabrication of improved sensors have been presented. The zero pressure capacitance, Co of sensor is 26.57pF, and the change of capacitance, ${\Delta}$C is 1.55pF from 0Kgf/Cm$^{2}$ to 1Kgf/Cm$^{2}$ at room temperature. The nonlinearity of the sensor output with center boss diaphragm is 1.29%F.S., and thermal zero shift and thermal sensitivity shift is less than 1.43%F.S./$^{\circ}C$and 0.14% F.S./$^{\circ}C$, respectively.

  • PDF

Gas sensor based on hydrogenated multilayer graphene

  • Park, Seong-Jin;Park, Min-Ji;Yu, Gyeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.273.1-273.1
    • /
    • 2016
  • Graphene exhibits a number of unique properties that make it an intriguing candidate for use in sensor. Here, we report graphene-based gas sensor. Graphene was grown using CVD. Then, the sensor was made using standard lithography techniques. The sensor conductance increased upon exposure to NH3, whereas it decreased upon NO2, suggesting that NH3 and NO2 might be discriminated using the graphene-based sensor. To improve the sensitivity, graphene was treated with hydrogen plasma. After hydrogen treatment, the electrical properties of graphene changed from ambipolar to p-type semiconductors. In addition, the sensor performance was improved probably due to an opening of bandgap.

  • PDF

Fabrication of a silicon pressure sensor for measuring low pressure using ICP-RIE (ICP-RIE를 이용한 저압용 실리콘 압력센서 제작)

  • Lee, Young-Tae;Takao, Hidekuni;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • In this paper, we fabricated piezoresistive pressure sensor with dry etching technology which used ICP-RIE (inductively coupled plasma reactive ion etching) and etching delay technology which used SOI (silicon-on-insulator). Structure of the fabricated pressure sensor shows a square diaphragm connected to a frame which was vertically fabricated by dry etching process and a single-element four-terminal gauge arranged at diaphragm edge. Sensitivity of the fabricated sensor was about 3.5 mV/V kPa at 1 kPa full-scale. Measurable resolution of the sensor was not exceeding 20 Pa. The nonlinearity of the fabricated pressure sensor was less than 0.5 %F.S.O. at 1 kPa full-scale.