• Title/Summary/Keyword: Sensor Reasoning

Search Result 46, Processing Time 0.025 seconds

Development of On-Line Diagnostic Expert System : Heuristics and Influence Diagrams (현장진단 전문가 시스템의 개발 : 휴리스틱과 인플루언스 다이아그램)

  • Kim, Young-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.95-113
    • /
    • 1997
  • This paper outlines a framework for a diagnosis of a complex system with uncertain information. Sensor validation ploys a vital role in the ability of the overall system to correctly determine the state of a system monitored by imperfect sensors. Here, emphases are put on the heuristic technology and post-processor for reasoning. Heuristic Sensor Validation (HSV) exploits deeper knowledge about parameter interaction within the plant to cull sensor faults from the data stream. Finally the modified probability distributions and validated data are used as input to the reasoning scheme which is the runtime version of the influence diagram. The output of the influence diagram is a diagnostic mapping from the symptoms or sensor readings to a determination of likely failure modes. Once likely failure modes are identified, a detailed diagnostic knowledge base suggests corrective actions to improve performance. This framework for a diagnostic expert system with sensor validation and reasoning under uncertainty applies in $HEATXPRT^{TM}$ a data-driven on-line expert system for diagnosing heat rate degradation problems in fossil power plants [1].

  • PDF

THE PROPOSAL OF GAS IDENTIFICATION METHOD BY FUZZY REASONING

  • Konishi, R.;Aoki, T.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1285-1288
    • /
    • 1993
  • We tried gas identification by using one semiconductive gas sensor. As a method of gas identification, we used the fuzzy reasoning with fuzzy set of slope of gas pattern which is divided into arbitary interval. As a result, we got a good successful rate for hydrogen 66.6%, propane 79.1%, butane 100%, methane 100%, city gas 79.1% and alcohol 91.6%, respectively.

  • PDF

A Study of Sensor Reasoning for the CBM+ Application in the Early Design Stage (CBM+ 적용을 위한 설계초기단계 센서선정 추론 연구)

  • Shin, Baek Cheon;Hur, Jang Wook
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-89
    • /
    • 2022
  • For system maintenance optimization, it is necessary to establish a state information system by CBM+ including CBM and RCM, and sensor selection for CBM+ application requires system process for function model analysis at the early design stage. The study investigated the contents of CBM and CBM+, analyzed the function analysis tasks and procedures of the system, and thus presented a D-FMEA based sensor selection inference methodology at the early stage of design for CBM+ application, and established it as a D-FMEA based sensor selection inference process. The D-FMEA-based sensor inference methodology and procedure in the early design stage were presented for diesel engine sub assembly.

RDFS Rule based Parallel Reasoning Scheme for Large-Scale Streaming Sensor Data (대용량 스트리밍 센서데이터 환경에서 RDFS 규칙기반 병렬추론 기법)

  • Kwon, SoonHyun;Park, Youngtack
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.686-698
    • /
    • 2014
  • Recently, large-scale streaming sensor data have emerged due to explosive supply of smart phones, diffusion of IoT and Cloud computing technology, and generalization of IoT devices. Also, researches on combination of semantic web technology are being actively pushed forward by increasing of requirements for creating new value of data through data sharing and mash-up in large-scale environments. However, we are faced with big issues due to large-scale and streaming data in the inference field for creating a new knowledge. For this reason, we propose the RDFS rule based parallel reasoning scheme to service by processing large-scale streaming sensor data with the semantic web technology. In the proposed scheme, we run in parallel each job of Rete network algorithm, the existing rule inference algorithm and sharing data using the HBase, a hadoop database, as a public storage. To achieve this, we implement our system and evaluate performance through the AWS data of the weather center as large-scale streaming sensor data.

Development of Influence Diagram Based Knowledge Base in Probabilistic Reasoning (인플루언스 다이아그램을 기초로 한 이상진단 지식베이스의 개발)

  • 김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3124-3134
    • /
    • 1993
  • Diagnosis is composed of two different but interrelated steps ; retrieving the sensory responses f the system and reasoning the state of the system through the given sensor data. This paper explains the probabilistic nature of reasoning involved in the diagnosis when the uncertainties are inevitably included in experts' diagnostic decision making. Uncertainties in decision making are experts' personal experiences, preferences, and system's coherent characteristics. In order to ensure a consistent decision based on the same responses from the system, expert system technology is adopted with the Bayesian reasoning scheme.

A Study for Context-Awareness based on Multi-Sensor in the Smart-Clothing (스마트의류에서 멀티센서 기반의 상황인지에 관한 연구)

  • Park, Hyun-Moon;Jeon, Byung-Chan;Ryu, Daehyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.71-78
    • /
    • 2013
  • In this paper, we propose a method to infer the user's behavior and situation through collected data from multi-sensor equipped with a smart clothing and it was implemented as a smartphone App. User context reasoning and behavior determine is very difficult using single sensor depending on the measured value of the sensor varies from environmental noise. So, the reasoning and the digital filter algorithms to determine user behavior reducing noise and are required. In this paper, we used EWMA, Kalman Filter and SVM processing behavior for 3-axis value as a representative value of one.

Object Recognition for Mobile Robot using Context-based Bi-directional Reasoning (상황 정보 기반 양방향 추론 방법을 이용한 이동 로봇의 물체 인식)

  • Lim, G.H.;Ryu, G.G.;Suh, I.H.;Kim, J.B.;Zhang, G.X.;Kang, J.H.;Park, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.6-8
    • /
    • 2007
  • In this paper, We propose reasoning system for object recognition and space classification using not only visual features but also contextual information. It is necessary to perceive object and classify space in real environments for mobile robot. especially vision based. Several visual features such as texture, SIFT. color are used for object recognition. Because of sensor uncertainty and object occlusion. there are many difficulties in vision-based perception. To show the validities of our reasoning system. experimental results will be illustrated. where object and space are inferred by bi -directional rules even with partial and uncertain information. And the system is combined with top-down and bottom-up approach.

  • PDF

Fusion of Sonar and Laser Sensor for Mobile Robot Environment Recognition

  • Kim, Kyung-Hoon;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91.3-91
    • /
    • 2001
  • A sensor fusion scheme for mobile robot environment recognition that incorporates range data and contour data is proposed. Ultrasonic sensor provides coarse spatial description but guarantees open space with no obstacle within sonic cone with relatively high belief. Laser structured light system provides detailed contour description of environment but prone to light noise and is easily affected by surface reflectivity. Overall fusion process is composed of two stages: Noise elimination and belief updates. Dempster Shafer´s evidential reasoning is applied at each stage. Open space estimation from sonar range measurements brings elimination of noisy lines from laser sensor. Comparing actual sonar data to the simulated sonar data enables ...

  • PDF

Ontology-Based Dynamic Context Management and Spatio-Temporal Reasoning for Intelligent Service Robots (지능형 서비스 로봇을 위한 온톨로지 기반의 동적 상황 관리 및 시-공간 추론)

  • Kim, Jonghoon;Lee, Seokjun;Kim, Dongha;Kim, Incheol
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1365-1375
    • /
    • 2016
  • One of the most important capabilities for autonomous service robots working in living environments is to recognize and understand the correct context in dynamically changing environment. To generate high-level context knowledge for decision-making from multiple sensory data streams, many technical problems such as multi-modal sensory data fusion, uncertainty handling, symbolic knowledge grounding, time dependency, dynamics, and time-constrained spatio-temporal reasoning should be solved. Considering these problems, this paper proposes an effective dynamic context management and spatio-temporal reasoning method for intelligent service robots. In order to guarantee efficient context management and reasoning, our algorithm was designed to generate low-level context knowledge reactively for every input sensory or perception data, while postponing high-level context knowledge generation until it was demanded by the decision-making module. When high-level context knowledge is demanded, it is derived through backward spatio-temporal reasoning. In experiments with Turtlebot using Kinect visual sensor, the dynamic context management and spatio-temporal reasoning system based on the proposed method showed high performance.

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.