DOI QR코드

DOI QR Code

Ontology-Based Dynamic Context Management and Spatio-Temporal Reasoning for Intelligent Service Robots

지능형 서비스 로봇을 위한 온톨로지 기반의 동적 상황 관리 및 시-공간 추론

  • Received : 2016.08.17
  • Accepted : 2016.10.21
  • Published : 2016.12.15

Abstract

One of the most important capabilities for autonomous service robots working in living environments is to recognize and understand the correct context in dynamically changing environment. To generate high-level context knowledge for decision-making from multiple sensory data streams, many technical problems such as multi-modal sensory data fusion, uncertainty handling, symbolic knowledge grounding, time dependency, dynamics, and time-constrained spatio-temporal reasoning should be solved. Considering these problems, this paper proposes an effective dynamic context management and spatio-temporal reasoning method for intelligent service robots. In order to guarantee efficient context management and reasoning, our algorithm was designed to generate low-level context knowledge reactively for every input sensory or perception data, while postponing high-level context knowledge generation until it was demanded by the decision-making module. When high-level context knowledge is demanded, it is derived through backward spatio-temporal reasoning. In experiments with Turtlebot using Kinect visual sensor, the dynamic context management and spatio-temporal reasoning system based on the proposed method showed high performance.

일상생활 환경 속에서 자율적으로 동작하는 서비스 로봇에게 가장 필수적인 능력 중 하나가 동적으로 변화하는 주변 환경에 대한 올바른 상황 인식과 이해 능력이다. 다양한 센서 데이터 스트림들로 부터 신속히 의사 결정에 필요한 고수준의 상황 지식을 생성해내기 위해서는, 멀티 모달 센서 데이터의 융합, 불확실성 처리, 기호 지식의 실체화, 시간 의존성과 가변성 처리, 실시간성을 만족할 수 있는 시-공간 추론 등 많은 문제들이 해결되어야 한다. 이와 같은 문제들을 고려하여, 본 논문에서는 지능형 서비스 로봇을 위한 효과적인 동적 상황 관리 및 시-공간 추론 방법을 제시한다. 본 논문에서는 상황 지식 관리와 추론의 효율성을 극대화하기 위해, 저수준의 상황 지식은 센서 및 인식 데이터가 입력될 때마다 실시간적으로 생성되지만, 반면에 고수준의 상황 지식은 의사 결정 모듈에서 요구가 있을 때만 후향 시-공간 추론을 통해 유도되도록 알고리즘을 설계하였다. Kinect 시각 센서 기반의 Turtlebot를 이용한 실험을 통해, 제안한 방법에 기초한 동적 상황 관리 및 추론 시스템의 높은 효율성을 확인할 수 있었다.

Keywords

Acknowledgement

Grant : 개인 서비스용 로봇을 위한 지능-지식 집약, 개방, 진화형 로봇지능 소프트웨어 프레임워크 기술 개발

Supported by : 산업통상자원부

References

  1. N. Hawes, "Long-term Autonomy in Everyday Environments: An Overview of the STRANDS Project," Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), 2016.
  2. S. Lemaignan, "Grounding the Interaction: Knowledge Management for Interactive Robots," PhD thesis, Technische Universitat Munchen, 2012.
  3. C. Dondrup, N. Bellotto, M. Hanheide, K. Eder, and U. Leonards, "A Computational Model of Human- Robot Spatial Interactions based on a Qualitative Trajectory Calculus," Robotics, Vol. 4, No. 1, pp. 63- 102, 2015.
  4. M. Beetz, M. Tenorth, J. Winkler, "Open-EASE : A Knowledge Processing Service for Robots and Robotics/AI Researchers," Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1983-1990, 2015.
  5. W3C Recommendation, 2004, "OWL Web Ontology Language Semantics and Abstract Syntax," [Online]. Available: http://www.w3.org/TR/owl-ref/.
  6. J. Wielemaker, T. Schrijvers, M. Triska, T. Lager, "SWI-Prolog," Theory and Practice of Logic Programming, Vol. 12, No. 1-2, pp. 67-96, 2012. https://doi.org/10.1017/S1471068411000494
  7. C. Schlenoff and E. Messina, "A Robot Ontology for Urban Search and Rescue," Proc. of the CIKM 2005 Workshop on Research in Knowledge Representation for Autonomous Systems, 2005.
  8. C. Schlenoff, R. Washington, T. Barbera, C. Manteuffel and S. Dungrani, "A Standard Intelligent Systems Ontology," Proc. of the SPIE Defense and Security Symposium, Unmanned Ground Vehicle Technology VII Conference, Orlando, FL, 2005.
  9. E. Prestes, S. R. Fiorini, and J. Carbonera, "Core Ontology for Robotics and Automation," Proc. of Workshop on Standardized Knowledge Representation and Ontologies for Robotics and Automation, 2014.
  10. G.H. Lim, I.H. Suh, H. Suh, "Ontology-based Unified Robot Knowledge for Service Robots in Indoor Environments," IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum, Vol. 41, No. 3, pp. 492- 509, 2011. https://doi.org/10.1109/TSMCA.2010.2076404
  11. M. Tenorth, M. Beetz, "Representations for Robot Knowledge in the KnowRob Framework," Artificial Intelligence, Elsevier, 2015.
  12. L. Kunze, K. K. Doreswamy, and N. Hawes, "Indirect Object Search based on Qualitative Spatial Relations," Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), 2014.
  13. A. Kreutzmann, D. Wolter, F. Dylla, J.H. Lee, "Towards Safe Navigation by Formalizing Navigation Rules," International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 7, No. 2, 2013.
  14. M. Labbe, find_object_2d, [Online].Available: http://wiki.ros.org/find_object_2d.
  15. J. F. Allen, "Maintaining Knowledge about Temporal Intervals," Communications of the ACM, Vol. 26, pp. 832-843, 1986.